While there is increasing concern about the interpretability of neural models, the evaluation of interpretability remains an open problem, due to the lack of proper evaluation datasets and metrics. In this paper, we present a novel benchmark to evaluate the interpretability of both neural models and saliency methods. This benchmark covers three representative NLP tasks: sentiment analysis, textual similarity and reading comprehension, each provided with both English and Chinese annotated data. In order to precisely evaluate the interpretability, we provide token-level rationales that are carefully annotated to be sufficient, compact and comprehensive. We also design a new metric, i.e., the consistency between the rationales before and after perturbations, to uniformly evaluate the interpretability on different types of tasks. Based on this benchmark, we conduct experiments on three typical models with three saliency methods, and unveil their strengths and weakness in terms of interpretability. We will release this benchmark (https://www.luge.ai/#/luge/task/taskDetail?taskId=15) and hope it can facilitate the research in building trustworthy systems.
Named entity recognition (NER) is a fundamental task to recognize specific types of entities from a given sentence. Depending on how the entities appear in the sentence, it can be divided into three subtasks, namely, Flat NER, Nested NER, and Discontinuous NER. Among the existing approaches, only the generative model can be uniformly adapted to these three subtasks. However, when the generative model is applied to NER, its optimization objective is not consistent with the task, which makes the model vulnerable to the incorrect biases. In this paper, we analyze the incorrect biases in the generation process from a causality perspective and attribute them to two confounders: pre-context confounder and entity-order confounder. Furthermore, we design Intra- and Inter-entity Deconfounding Data Augmentation methods to eliminate the above confounders according to the theory of backdoor adjustment. Experiments show that our method can improve the performance of the generative NER model in various datasets.
Recently, a lot of research has been carried out to improve the efficiency of Transformer. Among them, the sparse pattern-based method is an important branch of efficient Transformers. However, some existing sparse methods usually use fixed patterns to select words, without considering similarities between words. Other sparse methods use clustering patterns to select words, but the clustering process is separate from the training process of the target task, which causes a decrease in effectiveness. To address these limitations, we design a neural clustering method, which can be seamlessly integrated into the Self-Attention Mechanism in Transformer. The clustering task and the target task are jointly trained and optimized to benefit each other, leading to significant effectiveness improvement. In addition, our method groups the words with strong dependencies into the same cluster and performs the attention mechanism for each cluster independently, which improves the efficiency. We verified our method on machine translation, text classification, natural language inference, and text matching tasks. Experimental results show that our method outperforms two typical sparse attention methods, Reformer and Routing Transformer while having a comparable or even better time and memory efficiency.
Syntactic information has been proved to be useful for transformer-based pre-trained language models. Previous studies often rely on additional syntax-guided attention components to enhance the transformer, which require more parameters and additional syntactic parsing in downstream tasks. This increase in complexity severely limits the application of syntax-enhanced language model in a wide range of scenarios. In order to inject syntactic knowledge effectively and efficiently into pre-trained language models, we propose a novel syntax-guided contrastive learning method which does not change the transformer architecture. Based on constituency and dependency structures of syntax trees, we design phrase-guided and tree-guided contrastive objectives, and optimize them in the pre-training stage, so as to help the pre-trained language model to capture rich syntactic knowledge in its representations. Experimental results show that our contrastive method achieves consistent improvements in a variety of tasks, including grammatical error detection, entity tasks, structural probing and GLUE. Detailed analysis further verifies that the improvements come from the utilization of syntactic information, and the learned attention weights are more explainable in terms of linguistics.
Named entity recognition (NER) is a well-studied task in natural language processing. Traditional NER research only deals with flat entities and ignores nested entities. The span-based methods treat entity recognition as a span classification task. Although these methods have the innate ability to handle nested NER, they suffer from high computational cost, ignorance of boundary information, under-utilization of the spans that partially match with entities, and difficulties in long entity recognition. To tackle these issues, we propose a two-stage entity identifier. First we generate span proposals by filtering and boundary regression on the seed spans to locate the entities, and then label the boundary-adjusted span proposals with the corresponding categories. Our method effectively utilizes the boundary information of entities and partially matched spans during training. Through boundary regression, entities of any length can be covered theoretically, which improves the ability to recognize long entities. In addition, many low-quality seed spans are filtered out in the first stage, which reduces the time complexity of inference. Experiments on nested NER datasets demonstrate that our proposed method outperforms previous state-of-the-art models.
Orthogonality constraints encourage matrices to be orthogonal for numerical stability. These plug-and-play constraints, which can be conveniently incorporated into model training, have been studied for popular architectures in natural language processing, such as convolutional neural networks and recurrent neural networks. However, a dedicated study on such constraints for transformers has been absent. To fill this gap, this paper studies orthogonality constraints for transformers, showing the effectiveness with empirical evidence from ten machine translation tasks and two dialogue generation tasks. For example, on the large-scale WMT’16 En→De benchmark, simply plugging-and-playing orthogonality constraints on the original transformer model (Vaswani et al., 2017) increases the BLEU from 28.4 to 29.6, coming close to the 29.7 BLEU achieved by the very competitive dynamic convolution (Wu et al., 2019).
The design of expressive representations of entities and relations in a knowledge graph is an important endeavor. While many of the existing approaches have primarily focused on learning from relational patterns and structural information, the intrinsic complexity of KG entities has been more or less overlooked. More concretely, we hypothesize KG entities may be more complex than we think, i.e., an entity may wear many hats and relational triplets may form due to more than a single reason. To this end, this paper proposes to learn disentangled representations of KG entities - a new method that disentangles the inner latent properties of KG entities. Our disentangled process operates at the graph level and a neighborhood mechanism is leveraged to disentangle the hidden properties of each entity. This disentangled representation learning approach is model agnostic and compatible with canonical KG embedding approaches. We conduct extensive experiments on several benchmark datasets, equipping a variety of models (DistMult, SimplE, and QuatE) with our proposed disentangling mechanism. Experimental results demonstrate that our proposed approach substantially improves performance on key metrics.
Many state-of-the-art neural models for NLP are heavily parameterized and thus memory inefficient. This paper proposes a series of lightweight and memory efficient neural architectures for a potpourri of natural language processing (NLP) tasks. To this end, our models exploit computation using Quaternion algebra and hypercomplex spaces, enabling not only expressive inter-component interactions but also significantly (75%) reduced parameter size due to lesser degrees of freedom in the Hamilton product. We propose Quaternion variants of models, giving rise to new architectures such as the Quaternion attention Model and Quaternion Transformer. Extensive experiments on a battery of NLP tasks demonstrates the utility of proposed Quaternion-inspired models, enabling up to 75% reduction in parameter size without significant loss in performance.