Shiyang Li


Controllable Dialogue Simulation with In-context Learning
Zekun Li | Wenhu Chen | Shiyang Li | Hong Wang | Jing Qian | Xifeng Yan
Findings of the Association for Computational Linguistics: EMNLP 2022

Building dialogue systems requires a large corpus of annotated dialogues. Such datasets are usually created via crowdsourcing, which is expensive and time-consuming. In this paper, we propose Dialogic, a novel dialogue simulation method based on large language model in-context learning to automate dataset creation. Seeded with a few annotated dialogues, Dialogic automatically selects in-context examples for demonstration and prompts GPT-3 to generate new dialogues and annotations in a controllable way. Our method can rapidly expand a small set of dialogue data with minimum or zero human involvement and parameter update and is thus much more cost-efficient and time-saving than crowdsourcing. Experimental results on the MultiWOZ dataset demonstrate that training a model on the simulated dialogues leads to even better performance than using the same amount of human-generated dialogues under the challenging low-resource settings, with as few as 85 dialogues as a seed. When the full training set is given, our method can still serve as an effective data augmentation method to further improve performance. Human evaluation results also show that our simulated dialogues have near-human fluency and annotation accuracy. The code and data are available at .

ConvFinQA: Exploring the Chain of Numerical Reasoning in Conversational Finance Question Answering
Zhiyu Chen | Shiyang Li | Charese Smiley | Zhiqiang Ma | Sameena Shah | William Yang Wang
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

With the recent advance in large pre-trained language models, researchers have achieved record performances in NLP tasks that mostly focus on language pattern matching. The community is experiencing the shift of the challenge from how to model language to the imitation of complex reasoning abilities like human beings. In this work, we investigate the application domain of finance that involves real-world, complex numerical reasoning. We propose a new large-scale dataset, ConvFinQA, aiming to study the chain of numerical reasoning in conversational question answering. Our dataset poses great challenge in modeling long-range, complex numerical reasoning paths in real-world conversations. We conduct comprehensive experiments and analyses with both the neural symbolic methods and the prompting-based methods, to provide insights into the reasoning mechanisms of these two divisions. We believe our new dataset should serve as a valuable resource to push forward the exploration of real-world, complex reasoning tasks as the next research focus. Our dataset and code is publicly available at


Task-adaptive Pre-training and Self-training are Complementary for Natural Language Understanding
Shiyang Li | Semih Yavuz | Wenhu Chen | Xifeng Yan
Findings of the Association for Computational Linguistics: EMNLP 2021

Task-adaptive pre-training (TAPT) and Self-training (ST) have emerged as the major semi-supervised approaches to improve natural language understanding (NLU) tasks with massive amount of unlabeled data. However, it’s unclear whether they learn similar representations or they can be effectively combined. In this paper, we show that TAPT and ST can be complementary with simple TFS protocol by following TAPT -> Finetuning -> Self-training (TFS) process. Experimental results show that TFS protocol can effectively utilize unlabeled data to achieve strong combined gains consistently across six datasets covering sentiment classification, paraphrase identification, natural language inference, named entity recognition and dialogue slot classification. We investigate various semi-supervised settings and consistently show that gains from TAPT and ST can be strongly additive by following TFS procedure. We hope that TFS could serve as an important semi-supervised baseline for future NLP studies.