Shinji Watanabe


2022

pdf bib
Self-supervised Representation Learning for Speech Processing
Hung-yi Lee | Abdelrahman Mohamed | Shinji Watanabe | Tara Sainath | Karen Livescu | Shang-Wen Li | Shu-wen Yang | Katrin Kirchhoff
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Tutorial Abstracts

There is a trend in the machine learning community to adopt self-supervised approaches to pre-train deep networks. Self-supervised representation learning (SSL) utilizes proxy supervised learning tasks, for example, distinguishing parts of the input signal from distractors, or generating masked input segments conditioned on the unmasked ones, to obtain training data from unlabeled corpora. BERT and GPT in NLP and SimCLR and BYOL in CV are famous examples in this direction. These approaches make it possible to use a tremendous amount of unlabeled data available on the web to train large networks and solve complicated tasks. Thus, SSL has the potential to scale up current machine learning technologies, especially for low-resourced, under-represented use cases, and democratize the technologies. Recently self-supervised approaches for speech processing are also gaining popularity. There are several workshops in relevant topics hosted at ICML 2020 (https://icml-sas.gitlab.io/), NeurIPS 2020 (https://neurips-sas-2020.github.io/), and AAAI 2022 (https://aaai-sas-2022.github.io/). However, there is no previous tutorial about a similar topic based on the authors’ best knowledge. Due to the growing popularity of SSL, and the shared mission of the areas in bringing speech and language technologies to more use cases with better quality and scaling the technologies for under-represented languages, we propose this tutorial to systematically survey the latest SSL techniques, tools, datasets, and performance achievement in speech processing. The proposed tutorial is highly relevant to the special theme of ACL about language diversity. One of the main focuses of the tutorial is leveraging SSL to reduce the dependence of speech technologies on labeled data, and to scale up the technologies especially for under-represented languages and use cases.

pdf
Phone Inventories and Recognition for Every Language
Xinjian Li | Florian Metze | David R. Mortensen | Alan W Black | Shinji Watanabe
Proceedings of the Thirteenth Language Resources and Evaluation Conference

Identifying phone inventories is a crucial component in language documentation and the preservation of endangered languages. However, even the largest collection of phone inventory only covers about 2000 languages, which is only 1/4 of the total number of languages in the world. A majority of the remaining languages are endangered. In this work, we attempt to solve this problem by estimating the phone inventory for any language listed in Glottolog, which contains phylogenetic information regarding 8000 languages. In particular, we propose one probabilistic model and one non-probabilistic model, both using phylogenetic trees (“language family trees”) to measure the distance between languages. We show that our best model outperforms baseline models by 6.5 F1. Furthermore, we demonstrate that, with the proposed inventories, the phone recognition model can be customized for every language in the set, which improved the PER (phone error rate) in phone recognition by 25%.

pdf
SUPERB-SG: Enhanced Speech processing Universal PERformance Benchmark for Semantic and Generative Capabilities
Hsiang-Sheng Tsai | Heng-Jui Chang | Wen-Chin Huang | Zili Huang | Kushal Lakhotia | Shu-wen Yang | Shuyan Dong | Andy Liu | Cheng-I Lai | Jiatong Shi | Xuankai Chang | Phil Hall | Hsuan-Jui Chen | Shang-Wen Li | Shinji Watanabe | Abdelrahman Mohamed | Hung-yi Lee
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Transfer learning has proven to be crucial in advancing the state of speech and natural language processing research in recent years. In speech, a model pre-trained by self-supervised learning transfers remarkably well on multiple tasks. However, the lack of a consistent evaluation methodology is limiting towards a holistic understanding of the efficacy of such models. SUPERB was a step towards introducing a common benchmark to evaluate pre-trained models across various speech tasks. In this paper, we introduce SUPERB-SG, a new benchmark focusing on evaluating the semantic and generative capabilities of pre-trained models by increasing task diversity and difficulty over SUPERB. We use a lightweight methodology to test the robustness of representations learned by pre-trained models under shifts in data domain and quality across different types of tasks. It entails freezing pre-trained model parameters, only using simple task-specific trainable heads. The goal is to be inclusive of all researchers, and encourage efficient use of computational resources. We also show that the task diversity of SUPERB-SG coupled with limited task supervision is an effective recipe for evaluating the generalizability of model representation.

pdf
Zero-shot Learning for Grapheme to Phoneme Conversion with Language Ensemble
Xinjian Li | Florian Metze | David Mortensen | Shinji Watanabe | Alan Black
Findings of the Association for Computational Linguistics: ACL 2022

Grapheme-to-Phoneme (G2P) has many applications in NLP and speech fields. Most existing work focuses heavily on languages with abundant training datasets, which limits the scope of target languages to less than 100 languages. This work attempts to apply zero-shot learning to approximate G2P models for all low-resource and endangered languages in Glottolog (about 8k languages). For any unseen target language, we first build the phylogenetic tree (i.e. language family tree) to identify top-k nearest languages for which we have training sets. Then we run models of those languages to obtain a hypothesis set, which we combine into a confusion network to propose a most likely hypothesis as an approximation to the target language. We test our approach on over 600 unseen languages and demonstrate it significantly outperforms baselines.

pdf
Token-level Sequence Labeling for Spoken Language Understanding using Compositional End-to-End Models
Siddhant Arora | Siddharth Dalmia | Brian Yan | Florian Metze | Alan W Black | Shinji Watanabe
Findings of the Association for Computational Linguistics: EMNLP 2022

End-to-end spoken language understanding (SLU) systems are gaining popularity over cascaded approaches due to their simplicity and ability to avoid error propagation. However, these systems model sequence labeling as a sequence prediction task causing a divergence from its well-established token-level tagging formulation. We build compositional end-to-end SLU systems that explicitly separate the added complexity of recognizing spoken mentions in SLU from the NLU task of sequence labeling. By relying on intermediate decoders trained for ASR, our end-to-end systems transform the input modality from speech to token-level representations that can be used in the traditional sequence labeling framework. This composition of ASR and NLU formulations in our end-to-end SLU system offers direct compatibility with pre-trained ASR and NLU systems, allows performance monitoring of individual components and enables the use of globally normalized losses like CRF, making them attractive in practical scenarios. Our models outperform both cascaded and direct end-to-end models on a labeling task of named entity recognition across SLU benchmarks.

pdf
BERT Meets CTC: New Formulation of End-to-End Speech Recognition with Pre-trained Masked Language Model
Yosuke Higuchi | Brian Yan | Siddhant Arora | Tetsuji Ogawa | Tetsunori Kobayashi | Shinji Watanabe
Findings of the Association for Computational Linguistics: EMNLP 2022

This paper presents BERT-CTC, a novel formulation of end-to-end speech recognition that adapts BERT for connectionist temporal classification (CTC). Our formulation relaxes the conditional independence assumptions used in conventional CTC and incorporates linguistic knowledge through the explicit output dependency obtained by BERT contextual embedding. BERT-CTC attends to the full contexts of the input and hypothesized output sequences via the self-attention mechanism. This mechanism encourages a model to learn inner/inter-dependencies between the audio and token representations while maintaining CTC’s training efficiency. During inference, BERT-CTC combines a mask-predict algorithm with CTC decoding, which iteratively refines an output sequence. The experimental results reveal that BERT-CTC improves over conventional approaches across variations in speaking styles and languages. Finally, we show that the semantic representations in BERT-CTC are beneficial towards downstream spoken language understanding tasks.

pdf
Findings of the IWSLT 2022 Evaluation Campaign
Antonios Anastasopoulos | Loïc Barrault | Luisa Bentivogli | Marcely Zanon Boito | Ondřej Bojar | Roldano Cattoni | Anna Currey | Georgiana Dinu | Kevin Duh | Maha Elbayad | Clara Emmanuel | Yannick Estève | Marcello Federico | Christian Federmann | Souhir Gahbiche | Hongyu Gong | Roman Grundkiewicz | Barry Haddow | Benjamin Hsu | Dávid Javorský | Vĕra Kloudová | Surafel Lakew | Xutai Ma | Prashant Mathur | Paul McNamee | Kenton Murray | Maria Nǎdejde | Satoshi Nakamura | Matteo Negri | Jan Niehues | Xing Niu | John Ortega | Juan Pino | Elizabeth Salesky | Jiatong Shi | Matthias Sperber | Sebastian Stüker | Katsuhito Sudoh | Marco Turchi | Yogesh Virkar | Alexander Waibel | Changhan Wang | Shinji Watanabe
Proceedings of the 19th International Conference on Spoken Language Translation (IWSLT 2022)

The evaluation campaign of the 19th International Conference on Spoken Language Translation featured eight shared tasks: (i) Simultaneous speech translation, (ii) Offline speech translation, (iii) Speech to speech translation, (iv) Low-resource speech translation, (v) Multilingual speech translation, (vi) Dialect speech translation, (vii) Formality control for speech translation, (viii) Isometric speech translation. A total of 27 teams participated in at least one of the shared tasks. This paper details, for each shared task, the purpose of the task, the data that were released, the evaluation metrics that were applied, the submissions that were received and the results that were achieved.

pdf
CMU’s IWSLT 2022 Dialect Speech Translation System
Brian Yan | Patrick Fernandes | Siddharth Dalmia | Jiatong Shi | Yifan Peng | Dan Berrebbi | Xinyi Wang | Graham Neubig | Shinji Watanabe
Proceedings of the 19th International Conference on Spoken Language Translation (IWSLT 2022)

This paper describes CMU’s submissions to the IWSLT 2022 dialect speech translation (ST) shared task for translating Tunisian-Arabic speech to English text. We use additional paired Modern Standard Arabic data (MSA) to directly improve the speech recognition (ASR) and machine translation (MT) components of our cascaded systems. We also augment the paired ASR data with pseudo translations via sequence-level knowledge distillation from an MT model and use these artificial triplet ST data to improve our end-to-end (E2E) systems. Our E2E models are based on the Multi-Decoder architecture with searchable hidden intermediates. We extend the Multi-Decoder by orienting the speech encoder towards the target language by applying ST supervision as hierarchical connectionist temporal classification (CTC) multi-task. During inference, we apply joint decoding of the ST CTC and ST autoregressive decoder branches of our modified Multi-Decoder. Finally, we apply ROVER voting, posterior combination, and minimum bayes-risk decoding with combined N-best lists to ensemble our various cascaded and E2E systems. Our best systems reached 20.8 and 19.5 BLEU on test2 (blind) and test1 respectively. Without any additional MSA data, we reached 20.4 and 19.2 on the same test sets.

2021

pdf
ESPnet-ST IWSLT 2021 Offline Speech Translation System
Hirofumi Inaguma | Brian Yan | Siddharth Dalmia | Pengcheng Guo | Jiatong Shi | Kevin Duh | Shinji Watanabe
Proceedings of the 18th International Conference on Spoken Language Translation (IWSLT 2021)

This paper describes the ESPnet-ST group’s IWSLT 2021 submission in the offline speech translation track. This year we made various efforts on training data, architecture, and audio segmentation. On the data side, we investigated sequence-level knowledge distillation (SeqKD) for end-to-end (E2E) speech translation. Specifically, we used multi-referenced SeqKD from multiple teachers trained on different amounts of bitext. On the architecture side, we adopted the Conformer encoder and the Multi-Decoder architecture, which equips dedicated decoders for speech recognition and translation tasks in a unified encoder-decoder model and enables search in both source and target language spaces during inference. We also significantly improved audio segmentation by using the pyannote.audio toolkit and merging multiple short segments for long context modeling. Experimental evaluations showed that each of them contributed to large improvements in translation performance. Our best E2E system combined all the above techniques with model ensembling and achieved 31.4 BLEU on the 2-ref of tst2021 and 21.2 BLEU and 19.3 BLEU on the two single references of tst2021.

pdf
Self-Guided Curriculum Learning for Neural Machine Translation
Lei Zhou | Liang Ding | Kevin Duh | Shinji Watanabe | Ryohei Sasano | Koichi Takeda
Proceedings of the 18th International Conference on Spoken Language Translation (IWSLT 2021)

In supervised learning, a well-trained model should be able to recover ground truth accurately, i.e. the predicted labels are expected to resemble the ground truth labels as much as possible. Inspired by this, we formulate a difficulty criterion based on the recovery degrees of training examples. Motivated by the intuition that after skimming through the training corpus, the neural machine translation (NMT) model “knows” how to schedule a suitable curriculum according to learning difficulty, we propose a self-guided curriculum learning strategy that encourages the NMT model to learn from easy to hard on the basis of recovery degrees. Specifically, we adopt sentence-level BLEU score as the proxy of recovery degree. Experimental results on translation benchmarks including WMT14 English-German and WMT17 Chinese-English demonstrate that our proposed method considerably improves the recovery degree, thus consistently improving the translation performance.

pdf
Leveraging End-to-End ASR for Endangered Language Documentation: An Empirical Study on Yolóxochitl Mixtec
Jiatong Shi | Jonathan D. Amith | Rey Castillo García | Esteban Guadalupe Sierra | Kevin Duh | Shinji Watanabe
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

“Transcription bottlenecks”, created by a shortage of effective human transcribers (i.e., transcriber shortage), are one of the main challenges to endangered language (EL) documentation. Automatic speech recognition (ASR) has been suggested as a tool to overcome such bottlenecks. Following this suggestion, we investigated the effectiveness for EL documentation of end-to-end ASR, which unlike Hidden Markov Model ASR systems, eschews linguistic resources but is instead more dependent on large-data settings. We open source a Yoloxóchitl Mixtec EL corpus. First, we review our method in building an end-to-end ASR system in a way that would be reproducible by the ASR community. We then propose a novice transcription correction task and demonstrate how ASR systems and novice transcribers can work together to improve EL documentation. We believe this combinatory methodology would mitigate the transcription bottleneck and transcriber shortage that hinders EL documentation.

pdf
Highland Puebla Nahuatl Speech Translation Corpus for Endangered Language Documentation
Jiatong Shi | Jonathan D. Amith | Xuankai Chang | Siddharth Dalmia | Brian Yan | Shinji Watanabe
Proceedings of the First Workshop on Natural Language Processing for Indigenous Languages of the Americas

Documentation of endangered languages (ELs) has become increasingly urgent as thousands of languages are on the verge of disappearing by the end of the 21st century. One challenging aspect of documentation is to develop machine learning tools to automate the processing of EL audio via automatic speech recognition (ASR), machine translation (MT), or speech translation (ST). This paper presents an open-access speech translation corpus of Highland Puebla Nahuatl (glottocode high1278), an EL spoken in central Mexico. It then addresses machine learning contributions to endangered language documentation and argues for the importance of speech translation as a key element in the documentation process. In our experiments, we observed that state-of-the-art end-to-end ST models could outperform a cascaded ST (ASR > MT) pipeline when translating endangered language documentation materials.

pdf
End-to-end ASR to jointly predict transcriptions and linguistic annotations
Motoi Omachi | Yuya Fujita | Shinji Watanabe | Matthew Wiesner
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

We propose a Transformer-based sequence-to-sequence model for automatic speech recognition (ASR) capable of simultaneously transcribing and annotating audio with linguistic information such as phonemic transcripts or part-of-speech (POS) tags. Since linguistic information is important in natural language processing (NLP), the proposed ASR is especially useful for speech interface applications, including spoken dialogue systems and speech translation, which combine ASR and NLP. To produce linguistic annotations, we train the ASR system using modified training targets: each grapheme or multi-grapheme unit in the target transcript is followed by an aligned phoneme sequence and/or POS tag. Since our method has access to the underlying audio data, we can estimate linguistic annotations more accurately than pipeline approaches in which NLP-based methods are applied to a hypothesized ASR transcript. Experimental results on Japanese and English datasets show that the proposed ASR system is capable of simultaneously producing high-quality transcriptions and linguistic annotations.

pdf
Source and Target Bidirectional Knowledge Distillation for End-to-end Speech Translation
Hirofumi Inaguma | Tatsuya Kawahara | Shinji Watanabe
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

A conventional approach to improving the performance of end-to-end speech translation (E2E-ST) models is to leverage the source transcription via pre-training and joint training with automatic speech recognition (ASR) and neural machine translation (NMT) tasks. However, since the input modalities are different, it is difficult to leverage source language text successfully. In this work, we focus on sequence-level knowledge distillation (SeqKD) from external text-based NMT models. To leverage the full potential of the source language information, we propose backward SeqKD, SeqKD from a target-to-source backward NMT model. To this end, we train a bilingual E2E-ST model to predict paraphrased transcriptions as an auxiliary task with a single decoder. The paraphrases are generated from the translations in bitext via back-translation. We further propose bidirectional SeqKD in which SeqKD from both forward and backward NMT models is combined. Experimental evaluations on both autoregressive and non-autoregressive models show that SeqKD in each direction consistently improves the translation performance, and the effectiveness is complementary regardless of the model capacity.

pdf
Searchable Hidden Intermediates for End-to-End Models of Decomposable Sequence Tasks
Siddharth Dalmia | Brian Yan | Vikas Raunak | Florian Metze | Shinji Watanabe
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

End-to-end approaches for sequence tasks are becoming increasingly popular. Yet for complex sequence tasks, like speech translation, systems that cascade several models trained on sub-tasks have shown to be superior, suggesting that the compositionality of cascaded systems simplifies learning and enables sophisticated search capabilities. In this work, we present an end-to-end framework that exploits compositionality to learn searchable hidden representations at intermediate stages of a sequence model using decomposed sub-tasks. These hidden intermediates can be improved using beam search to enhance the overall performance and can also incorporate external models at intermediate stages of the network to re-score or adapt towards out-of-domain data. One instance of the proposed framework is a Multi-Decoder model for speech translation that extracts the searchable hidden intermediates from a speech recognition sub-task. The model demonstrates the aforementioned benefits and outperforms the previous state-of-the-art by around +6 and +3 BLEU on the two test sets of Fisher-CallHome and by around +3 and +4 BLEU on the English-German and English-French test sets of MuST-C.

2020

pdf
ESPnet-ST: All-in-One Speech Translation Toolkit
Hirofumi Inaguma | Shun Kiyono | Kevin Duh | Shigeki Karita | Nelson Yalta | Tomoki Hayashi | Shinji Watanabe
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations

We present ESPnet-ST, which is designed for the quick development of speech-to-speech translation systems in a single framework. ESPnet-ST is a new project inside end-to-end speech processing toolkit, ESPnet, which integrates or newly implements automatic speech recognition, machine translation, and text-to-speech functions for speech translation. We provide all-in-one recipes including data pre-processing, feature extraction, training, and decoding pipelines for a wide range of benchmark datasets. Our reproducible results can match or even outperform the current state-of-the-art performances; these pre-trained models are downloadable. The toolkit is publicly available at https://github.com/espnet/espnet.

2019

pdf
Massively Multilingual Adversarial Speech Recognition
Oliver Adams | Matthew Wiesner | Shinji Watanabe | David Yarowsky
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

We report on adaptation of multilingual end-to-end speech recognition models trained on as many as 100 languages. Our findings shed light on the relative importance of similarity between the target and pretraining languages along the dimensions of phonetics, phonology, language family, geographical location, and orthography. In this context, experiments demonstrate the effectiveness of two additional pretraining objectives in encouraging language-independent encoder representations: a context-independent phoneme objective paired with a language-adversarial classification objective.

pdf
ESPnet How2 Speech Translation System for IWSLT 2019: Pre-training, Knowledge Distillation, and Going Deeper
Hirofumi Inaguma | Shun Kiyono | Nelson Enrique Yalta Soplin | Jun Suzuki | Kevin Duh | Shinji Watanabe
Proceedings of the 16th International Conference on Spoken Language Translation

This paper describes the ESPnet submissions to the How2 Speech Translation task at IWSLT2019. In this year, we mainly build our systems based on Transformer architectures in all tasks and focus on the end-to-end speech translation (E2E-ST). We first compare RNN-based models and Transformer, and then confirm Transformer models significantly and consistently outperform RNN models in all tasks and corpora. Next, we investigate pre-training of E2E-ST models with the ASR and MT tasks. On top of the pre-training, we further explore knowledge distillation from the NMT model and the deeper speech encoder, and confirm drastic improvements over the baseline model. All of our codes are publicly available in ESPnet.

2018

pdf
The JHU/KyotoU Speech Translation System for IWSLT 2018
Hirofumi Inaguma | Xuan Zhang | Zhiqi Wang | Adithya Renduchintala | Shinji Watanabe | Kevin Duh
Proceedings of the 15th International Conference on Spoken Language Translation

This paper describes the Johns Hopkins University (JHU) and Kyoto University submissions to the Speech Translation evaluation campaign at IWSLT2018. Our end-to-end speech translation systems are based on ESPnet and implements an attention-based encoder-decoder model. As comparison, we also experiment with a pipeline system that uses independent neural network systems for both the speech transcription and text translation components. We find that a transfer learning approach that bootstraps the end-to-end speech translation system with speech transcription system’s parameters is important for training on small datasets.

pdf
A Purely End-to-End System for Multi-speaker Speech Recognition
Hiroshi Seki | Takaaki Hori | Shinji Watanabe | Jonathan Le Roux | John R. Hershey
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Recently, there has been growing interest in multi-speaker speech recognition, where the utterances of multiple speakers are recognized from their mixture. Promising techniques have been proposed for this task, but earlier works have required additional training data such as isolated source signals or senone alignments for effective learning. In this paper, we propose a new sequence-to-sequence framework to directly decode multiple label sequences from a single speech sequence by unifying source separation and speech recognition functions in an end-to-end manner. We further propose a new objective function to improve the contrast between the hidden vectors to avoid generating similar hypotheses. Experimental results show that the model is directly able to learn a mapping from a speech mixture to multiple label sequences, achieving 83.1% relative improvement compared to a model trained without the proposed objective. Interestingly, the results are comparable to those produced by previous end-to-end works featuring explicit separation and recognition modules.

2017

pdf
Joint CTC/attention decoding for end-to-end speech recognition
Takaaki Hori | Shinji Watanabe | John Hershey
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

End-to-end automatic speech recognition (ASR) has become a popular alternative to conventional DNN/HMM systems because it avoids the need for linguistic resources such as pronunciation dictionary, tokenization, and context-dependency trees, leading to a greatly simplified model-building process. There are two major types of end-to-end architectures for ASR: attention-based methods use an attention mechanism to perform alignment between acoustic frames and recognized symbols, and connectionist temporal classification (CTC), uses Markov assumptions to efficiently solve sequential problems by dynamic programming. This paper proposes joint decoding algorithm for end-to-end ASR with a hybrid CTC/attention architecture, which effectively utilizes both advantages in decoding. We have applied the proposed method to two ASR benchmarks (spontaneous Japanese and Mandarin Chinese), and showing the comparable performance to conventional state-of-the-art DNN/HMM ASR systems without linguistic resources.

2013

pdf
Statistical Dialogue Management using Intention Dependency Graph
Koichiro Yoshino | Shinji Watanabe | Jonathan Le Roux | John R. Hershey
Proceedings of the Sixth International Joint Conference on Natural Language Processing

Search
Co-authors