Sheshera Mysore


Multi-Vector Models with Textual Guidance for Fine-Grained Scientific Document Similarity
Sheshera Mysore | Arman Cohan | Tom Hope
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

We present a new scientific document similarity model based on matching fine-grained aspects of texts. To train our model, we exploit a naturally-occurring source of supervision: sentences in the full-text of papers that cite multiple papers together (co-citations). Such co-citations not only reflect close paper relatedness, but also provide textual descriptions of how the co-cited papers are related. This novel form of textual supervision is used for learning to match aspects across papers. We develop multi-vector representations where vectors correspond to sentence-level aspects of documents, and present two methods for aspect matching: (1) A fast method that only matches single aspects, and (2) a method that makes sparse multiple matches with an Optimal Transport mechanism that computes an Earth Mover’s Distance between aspects. Our approach improves performance on document similarity tasks in four datasets. Further, our fast single-match method achieves competitive results, paving the way for applying fine-grained similarity to large scientific corpora.


MS-Mentions: Consistently Annotating Entity Mentions in Materials Science Procedural Text
Tim O’Gorman | Zach Jensen | Sheshera Mysore | Kevin Huang | Rubayyat Mahbub | Elsa Olivetti | Andrew McCallum
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Material science synthesis procedures are a promising domain for scientific NLP, as proper modeling of these recipes could provide insight into new ways of creating materials. However, a fundamental challenge in building information extraction models for material science synthesis procedures is getting accurate labels for the materials, operations, and other entities of those procedures. We present a new corpus of entity mention annotations over 595 Material Science synthesis procedural texts (157,488 tokens), which greatly expands the training data available for the Named Entity Recognition task. We outline a new label inventory designed to provide consistent annotations and a new annotation approach intended to maximize the consistency and annotation speed of domain experts. Inter-annotator agreement studies and baseline models trained upon the data suggest that the corpus provides high-quality annotations of these mention types. This corpus helps lay a foundation for future high-quality modeling of synthesis procedures.


An Instance Level Approach for Shallow Semantic Parsing in Scientific Procedural Text
Daivik Swarup | Ahsaas Bajaj | Sheshera Mysore | Tim O’Gorman | Rajarshi Das | Andrew McCallum
Findings of the Association for Computational Linguistics: EMNLP 2020

In specific domains, such as procedural scientific text, human labeled data for shallow semantic parsing is especially limited and expensive to create. Fortunately, such specific domains often use rather formulaic writing, such that the different ways of expressing relations in a small number of grammatically similar labeled sentences may provide high coverage of semantic structures in the corpus, through an appropriately rich similarity metric. In light of this opportunity, this paper explores an instance-based approach to the relation prediction sub-task within shallow semantic parsing, in which semantic labels from structurally similar sentences in the training set are copied to test sentences. Candidate similar sentences are retrieved using SciBERT embeddings. For labels where it is possible to copy from a similar sentence we employ an instance level copy network, when this is not possible, a globally shared parametric model is employed. Experiments show our approach outperforms both baseline and prior methods by 0.75 to 3 F1 absolute in the Wet Lab Protocol Corpus and 1 F1 absolute in the Materials Science Procedural Text Corpus.


Roll Call Vote Prediction with Knowledge Augmented Models
Pallavi Patil | Kriti Myer | Ronak Zala | Arpit Singh | Sheshera Mysore | Andrew McCallum | Adrian Benton | Amanda Stent
Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL)

The official voting records of United States congresspeople are preserved as roll call votes. Prediction of voting behavior of politicians for whom no voting record exists, such as individuals running for office, is important for forecasting key political decisions. Prior work has relied on past votes cast to predict future votes, and thus fails to predict voting patterns for politicians without voting records. We address this by augmenting a prior state of the art model with multiple sources of external knowledge so as to enable prediction on unseen politicians. The sources of knowledge we use are news text and Freebase, a manually curated knowledge base. We propose augmentations based on unigram features for news text, and a knowledge base embedding method followed by a neural network composition for relations from Freebase. Empirical evaluation of these approaches indicate that the proposed models outperform the prior system for politicians with complete historical voting records by 1.0% point of accuracy (8.7% error reduction) and for politicians without voting records by 33.4% points of accuracy (66.7% error reduction). We also show that the knowledge base augmented approach outperforms the news text augmented approach by 4.2% points of accuracy.

The Materials Science Procedural Text Corpus: Annotating Materials Synthesis Procedures with Shallow Semantic Structures
Sheshera Mysore | Zachary Jensen | Edward Kim | Kevin Huang | Haw-Shiuan Chang | Emma Strubell | Jeffrey Flanigan | Andrew McCallum | Elsa Olivetti
Proceedings of the 13th Linguistic Annotation Workshop

Materials science literature contains millions of materials synthesis procedures described in unstructured natural language text. Large-scale analysis of these synthesis procedures would facilitate deeper scientific understanding of materials synthesis and enable automated synthesis planning. Such analysis requires extracting structured representations of synthesis procedures from the raw text as a first step. To facilitate the training and evaluation of synthesis extraction models, we introduce a dataset of 230 synthesis procedures annotated by domain experts with labeled graphs that express the semantics of the synthesis sentences. The nodes in this graph are synthesis operations and their typed arguments, and labeled edges specify relations between the nodes. We describe this new resource in detail and highlight some specific challenges to annotating scientific text with shallow semantic structure. We make the corpus available to the community to promote further research and development of scientific information extraction systems.