Shanu Kumar


2022

pdf
Multi Task Learning For Zero Shot Performance Prediction of Multilingual Models
Kabir Ahuja | Shanu Kumar | Sandipan Dandapat | Monojit Choudhury
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Massively Multilingual Transformer based Language Models have been observed to be surprisingly effective on zero-shot transfer across languages, though the performance varies from language to language depending on the pivot language(s) used for fine-tuning. In this work, we build upon some of the existing techniques for predicting the zero-shot performance on a task, by modeling it as a multi-task learning problem. We jointly train predictive models for different tasks which helps us build more accurate predictors for tasks where we have test data in very few languages to measure the actual performance of the model. Our approach also lends us the ability to perform a much more robust feature selection, and identify a common set of features that influence zero-shot performance across a variety of tasks.

pdf
”Diversity and Uncertainty in Moderation” are the Key to Data Selection for Multilingual Few-shot Transfer
Shanu Kumar | Sandipan Dandapat | Monojit Choudhury
Findings of the Association for Computational Linguistics: NAACL 2022

Few-shot transfer often shows substantial gain over zero-shot transfer (CITATION), which is a practically useful trade-off between fully supervised and unsupervised learning approaches for multilingual pretained model-based systems. This paper explores various strategies for selecting data for annotation that can result in a better few-shot transfer. The proposed approaches rely on multiple measures such as data entropy using n-gram language model, predictive entropy, and gradient embedding. We propose a loss embedding method for sequence labeling tasks, which induces diversity and uncertainty sampling similar to gradient embedding. The proposed data selection strategies are evaluated and compared for POS tagging, NER, and NLI tasks for up to 20 languages. Our experiments show that the gradient and loss embedding-based strategies consistently outperform random data selection baselines, with gains varying with the initial performance of the zero-shot transfer. Furthermore, the proposed method shows similar trends in improvement even when the model is fine-tuned using a lower proportion of the original task-specific labeled training data for zero-shot transfer.