Seonmin Koo


2022

pdf
A Dog Is Passing Over The Jet? A Text-Generation Dataset for Korean Commonsense Reasoning and Evaluation
Jaehyung Seo | Seounghoon Lee | Chanjun Park | Yoonna Jang | Hyeonseok Moon | Sugyeong Eo | Seonmin Koo | Heuiseok Lim
Findings of the Association for Computational Linguistics: NAACL 2022

Recent natural language understanding (NLU) research on the Korean language has been vigorously maturing with the advancements of pretrained language models and datasets. However, Korean pretrained language models still struggle to generate a short sentence with a given condition based on compositionality and commonsense reasoning (i.e., generative commonsense reasoning). The two major challenges are inadequate data resources to develop generative commonsense reasoning regarding Korean linguistic features and to evaluate language models which are necessary for natural language generation (NLG). To solve these problems, we propose a text-generation dataset for Korean generative commonsense reasoning and language model evaluation. In this work, a semi-automatic dataset construction approach filters out contents inexplicable to commonsense, ascertains quality, and reduces the cost of building the dataset. We also present an in-depth analysis of the generation results of language models with various evaluation metrics along with human-annotated scores. The whole dataset is publicly available at (https://aihub.or.kr/opendata/korea-university).