Fusion-in-decoder (Fid) (Izacard and Grave, 2020) is a generative question answering (QA) model that leverages passage retrieval with a pre-trained transformer and pushed the state of the art on single-hop QA. However, the complexity of multi-hop QA hinders the effectiveness of the generative QA approach. In this work, we propose a simple generative approach (PathFid) that extends the task beyond just answer generation by explicitly modeling the reasoning process to resolve the answer for multi-hop questions. By linearizing the hierarchical reasoning path of supporting passages, their key sentences, and finally the factoid answer, we cast the problem as a single sequence prediction task. To facilitate complex reasoning with multiple clues, we further extend the unified flat representation of multiple input documents by encoding cross-passage interactions. Our extensive experiments demonstrate that PathFid leads to strong performance gains on two multi-hop QA datasets: HotpotQA and IIRC. Besides the performance gains, PathFid is more interpretable, which in turn yields answers that are more faithfully grounded to the supporting passages and facts compared to the baseline Fid model.
Existing KBQA approaches, despite achieving strong performance on i.i.d. test data, often struggle in generalizing to questions involving unseen KB schema items. Prior ranking-based approaches have shown some success in generalization, but suffer from the coverage issue. We present RnG-KBQA, a Rank-and-Generate approach for KBQA, which remedies the coverage issue with a generation model while preserving a strong generalization capability. Our approach first uses a contrastive ranker to rank a set of candidate logical forms obtained by searching over the knowledge graph. It then introduces a tailored generation model conditioned on the question and the top-ranked candidates to compose the final logical form. We achieve new state-of-the-art results on GrailQA and WebQSP datasets. In particular, our method surpasses the prior state-of-the-art by a large margin on the GrailQA leaderboard. In addition, RnG-KBQA outperforms all prior approaches on the popular WebQSP benchmark, even including the ones that use the oracle entity linking. The experimental results demonstrate the effectiveness of the interplay between ranking and generation, which leads to the superior performance of our proposed approach across all settings with especially strong improvements in zero-shot generalization.
Abstractive summarization systems leveraging pre-training language models have achieved superior results on benchmark datasets. However, such models have been shown to be more prone to hallucinate facts that are unfaithful to the input context. In this paper, we propose a method to remedy entity-level extrinsic hallucinations with Entity Coverage Control (ECC). We first compute entity coverage precision and prepend the corresponding control code for each training example, which implicitly guides the model to recognize faithfulness contents in the training phase. We further extend our method via intermediate fine-tuning on large but noisy data extracted from Wikipedia to unlock zero-shot summarization. We show that the proposed method leads to more faithful and salient abstractive summarization in supervised fine-tuning and zero-shot settings according to our experimental results on three benchmark datasets XSum, Pubmed, and SAMSum of very different domains and styles.
While both extractive and generative readers have been successfully applied to the Question Answering (QA) task, little attention has been paid toward the systematic comparison of them. Characterizing the strengths and weaknesses of the two readers is crucial not only for making a more informed reader selection in practice but also for developing a deeper understanding to foster further research on improving readers in a principled manner. Motivated by this goal, we make the first attempt to systematically study the comparison of extractive and generative readers for question answering. To be aligned with the state-of-the-art, we explore nine transformer-based large pre-trained language models (PrLMs) as backbone architectures. Furthermore, we organize our findings under two main categories: (1) keeping the architecture invariant, and (2) varying the underlying PrLMs. Among several interesting findings, it is important to highlight that (1) the generative readers perform better in long context QA, (2) the extractive readers perform better in short context while also showing better out-of-domain generalization, and (3) the encoder of encoder-decoder PrLMs (e.g., T5) turns out to be a strong extractive reader and outperforms the standard choice of encoder-only PrLMs (e.g., RoBERTa). We also study the effect of multi-task learning on the two types of readers varying the underlying PrLMs and perform qualitative and quantitative diagnosis to provide further insights into future directions in modeling better readers.
Parsing natural language questions into executable logical forms is a useful and interpretable way to perform question answering on structured data such as knowledge bases (KB) or databases (DB). However, existing approaches on semantic parsing cannot adapt to both modalities, as they suffer from the exponential growth of the logical form candidates and can hardly generalize to unseen data.In this work, we propose Uni-Parser, a unified semantic parser for question answering (QA) on both KB and DB. We define the primitive (relation and entity in KB, and table name, column name and cell value in DB) as the essential element in our framework. The number of primitives grows only at a linear rate to the number of retrieved relations in KB and DB, preventing us from exponential logic form candidates. We leverage the generator to predict final logical forms by altering and composing top-ranked primitives with different operations (e.g. select, where, count). With sufficiently pruned search space by a contrastive primitive ranker, the generator is empowered to capture the composition of primitives enhancing its generalization ability. We achieve competitive results on multiple KB and DB QA benchmarks with more efficiency, especially in the compositional and zero-shot settings.
The benchmark performance of cross-database semantic parsing has climbed steadily in recent years, catalyzed by the wide adoption of pre-trained language models. Yet existing work have shown that state-of-the-art cross-database semantic parsers struggle to generalize to novel user utterances, databases and query structures. To obtain transparent details on the strengths and limitation of these models, we propose a diagnostic testing approach based on controlled synthesis of canonical natural language and SQL pairs. Inspired by the CheckList, we characterize a set of essential capabilities for cross-database semantic parsing models, and detailed the method for synthesizing the corresponding test data. We evaluated a variety of high performing models using the proposed approach, and identified several non-obvious weaknesses across models (e.g. unable to correctly select many columns). Our dataset and code are released as a test suite at http://github.com/hclent/BehaviorCheckingSemPar.
Paraphrase generation has benefited extensively from recent progress in the designing of training objectives and model architectures. However, previous explorations have largely focused on supervised methods, which require a large amount of labeled data that is costly to collect. To address this drawback, we adopt a transfer learning approach and propose a training pipeline that enables pre-trained language models to generate high-quality paraphrases in an unsupervised setting. Our recipe consists of task-adaptation, self-supervision, and a novel decoding algorithm named Dynamic Blocking (DB). To enforce a surface form dissimilar from the input, whenever the language model emits a token contained in the source sequence, DB prevents the model from outputting the subsequent source token for the next generation step. We show with automatic and human evaluations that our approach achieves state-of-the-art performance on both the Quora Question Pair (QQP) and the ParaNMT datasets and is robust to domain shift between the two datasets of distinct distributions. We also demonstrate that our model transfers to paraphrasing in other languages without any additional finetuning.
Dense neural text retrieval has achieved promising results on open-domain Question Answering (QA), where latent representations of questions and passages are exploited for maximum inner product search in the retrieval process. However, current dense retrievers require splitting documents into short passages that usually contain local, partial and sometimes biased context, and highly depend on the splitting process. As a consequence, it may yield inaccurate and misleading hidden representations, thus deteriorating the final retrieval result. In this work, we propose Dense Hierarchical Retrieval (DHR), a hierarchical framework which can generate accurate dense representations of passages by utilizing both macroscopic semantics in the document and microscopic semantics specific to each passage. Specifically, a document-level retriever first identifies relevant documents, among which relevant passages are then retrieved by a passage-level retriever. The ranking of the retrieved passages will be further calibrated by examining the document-level relevance. In addition, hierarchical title structure and two negative sampling strategies (i.e., In-Doc and In-Sec negatives) are investigated. We apply DHR to large-scale open-domain QA datasets. DHR significantly outperforms the original dense passage retriever, and helps an end-to-end QA system outperform the strong baselines on multiple open-domain QA benchmarks.
Task-adaptive pre-training (TAPT) and Self-training (ST) have emerged as the major semi-supervised approaches to improve natural language understanding (NLU) tasks with massive amount of unlabeled data. However, it’s unclear whether they learn similar representations or they can be effectively combined. In this paper, we show that TAPT and ST can be complementary with simple TFS protocol by following TAPT -> Finetuning -> Self-training (TFS) process. Experimental results show that TFS protocol can effectively utilize unlabeled data to achieve strong combined gains consistently across six datasets covering sentiment classification, paraphrase identification, natural language inference, named entity recognition and dialogue slot classification. We investigate various semi-supervised settings and consistently show that gains from TAPT and ST can be strongly additive by following TFS procedure. We hope that TFS could serve as an important semi-supervised baseline for future NLP studies.
Graph-to-text generation has benefited from pre-trained language models (PLMs) in achieving better performance than structured graph encoders. However, they fail to fully utilize the structure information of the input graph. In this paper, we aim to further improve the performance of the pre-trained language model by proposing a structured graph-to-text model with a two-step fine-tuning mechanism which first fine-tunes model on Wikipedia before adapting to the graph-to-text generation. In addition to using the traditional token and position embeddings to encode the knowledge graph (KG), we propose a novel tree-level embedding method to capture the inter-dependency structures of the input graph. This new approach has significantly improved the performance of all text generation metrics for the English WebNLG 2017 dataset.
The concept of Dialogue Act (DA) is universal across different task-oriented dialogue domains - the act of “request” carries the same speaker intention whether it is for restaurant reservation or flight booking. However, DA taggers trained on one domain do not generalize well to other domains, which leaves us with the expensive need for a large amount of annotated data in the target domain. In this work, we investigate how to better adapt DA taggers to desired target domains with only unlabeled data. We propose MaskAugment, a controllable mechanism that augments text input by leveraging the pre-trained Mask token from BERT model. Inspired by consistency regularization, we use MaskAugment to introduce an unsupervised teacher-student learning scheme to examine the domain adaptation of DA taggers. Our extensive experiments on the Simulated Dialogue (GSim) and Schema-Guided Dialogue (SGD) datasets show that MaskAugment is useful in improving the cross-domain generalization for DA tagging.
Recent advances in neural sequence-to-sequence models have led to promising results for several language generation-based tasks, including dialogue response generation, summarization, and machine translation. However, these models are known to have several problems, especially in the context of chit-chat based dialogue systems: they tend to generate short and dull responses that are often too generic. Furthermore, these models do not ground conversational responses on knowledge and facts, resulting in turns that are not accurate, informative and engaging for the users. In this paper, we propose and experiment with a series of response generation models that aim to serve in the general scenario where in addition to the dialogue context, relevant unstructured external knowledge in the form of text is also assumed to be available for models to harness. Our proposed approach extends pointer-generator networks (See et al., 2017) by allowing the decoder to hierarchically attend and copy from external knowledge in addition to the dialogue context. We empirically show the effectiveness of the proposed model compared to several baselines including (Ghazvininejadet al., 2018; Zhang et al., 2018) through both automatic evaluation metrics and human evaluation on ConvAI2 dataset.
Understanding and conversing about dynamic scenes is one of the key capabilities of AI agents that navigate the environment and convey useful information to humans. Video question answering is a specific scenario of such AI-human interaction where an agent generates a natural language response to a question regarding the video of a dynamic scene. Incorporating features from multiple modalities, which often provide supplementary information, is one of the challenging aspects of video question answering. Furthermore, a question often concerns only a small segment of the video, hence encoding the entire video sequence using a recurrent neural network is not computationally efficient. Our proposed question-guided video representation module efficiently generates the token-level video summary guided by each word in the question. The learned representations are then fused with the question to generate the answer. Through empirical evaluation on the Audio Visual Scene-aware Dialog (AVSD) dataset, our proposed models in single-turn and multi-turn question answering achieve state-of-the-art performance on several automatic natural language generation evaluation metrics.
Simultaneous machine translation begins to translate each source sentence before the source speaker is finished speaking, with applications to live and streaming scenarios. Simultaneous systems must carefully schedule their reading of the source sentence to balance quality against latency. We present the first simultaneous translation system to learn an adaptive schedule jointly with a neural machine translation (NMT) model that attends over all source tokens read thus far. We do so by introducing Monotonic Infinite Lookback (MILk) attention, which maintains both a hard, monotonic attention head to schedule the reading of the source sentence, and a soft attention head that extends from the monotonic head back to the beginning of the source. We show that MILk’s adaptive schedule allows it to arrive at latency-quality trade-offs that are favorable to those of a recently proposed wait-k strategy for many latency values.
A significant barrier to progress in data-driven approaches to building dialog systems is the lack of high quality, goal-oriented conversational data. To help satisfy this elementary requirement, we introduce the initial release of the Taskmaster-1 dataset which includes 13,215 task-based dialogs comprising six domains. Two procedures were used to create this collection, each with unique advantages. The first involves a two-person, spoken “Wizard of Oz” (WOz) approach in which trained agents and crowdsourced workers interact to complete the task while the second is “self-dialog” in which crowdsourced workers write the entire dialog themselves. We do not restrict the workers to detailed scripts or to a small knowledge base and hence we observe that our dataset contains more realistic and diverse conversations in comparison to existing datasets. We offer several baseline models including state of the art neural seq2seq architectures with benchmark performance as well as qualitative human evaluations. Dialogs are labeled with API calls and arguments, a simple and cost effective approach which avoids the requirement of complex annotation schema. The layer of abstraction between the dialog model and the service provider API allows for a given model to interact with multiple services that provide similar functionally. Finally, the dataset will evoke interest in written vs. spoken language, discourse patterns, error handling and other linguistic phenomena related to dialog system research, development and design.
WikiSQL is a newly released dataset for studying the natural language sequence to SQL translation problem. The SQL queries in WikiSQL are simple: Each involves one relation and does not have any join operation. Despite of its simplicity, none of the publicly reported structured query generation models can achieve an accuracy beyond 62%, which is still far from enough for practical use. In this paper, we ask two questions, “Why is the accuracy still low for such simple queries?” and “What does it take to achieve 100% accuracy on WikiSQL?” To limit the scope of our study, we focus on the WHERE clause in SQL. The answers will help us gain insights about the directions we should explore in order to further improve the translation accuracy. We will then investigate alternative solutions to realize the potential ceiling performance on WikiSQL. Our proposed solution can reach up to 88.6% condition accuracy on the WikiSQL dataset.
Maximum-likelihood estimation (MLE) is one of the most widely used approaches for training structured prediction models for text-generation based natural language processing applications. However, besides exposure bias, models trained with MLE suffer from wrong objective problem where they are trained to maximize the word-level correct next step prediction, but are evaluated with respect to sequence-level discrete metrics such as ROUGE and BLEU. Several variants of policy-gradient methods address some of these problems by optimizing for final discrete evaluation metrics and showing improvements over MLE training for downstream tasks like text summarization and machine translation. However, policy-gradient methods suffers from high sample variance, making the training process very difficult and unstable. In this paper, we present an alternative direction towards mitigating this problem by introducing a new objective (CaLcs) based on a differentiable surrogate of longest common subsequence (LCS) measure that captures sequence-level structure similarity. Experimental results on abstractive summarization and machine translation validate the effectiveness of the proposed approach.
We study the problem of textual relation embedding with distant supervision. To combat the wrong labeling problem of distant supervision, we propose to embed textual relations with global statistics of relations, i.e., the co-occurrence statistics of textual and knowledge base relations collected from the entire corpus. This approach turns out to be more robust to the training noise introduced by distant supervision. On a popular relation extraction dataset, we show that the learned textual relation embedding can be used to augment existing relation extraction models and significantly improve their performance. Most remarkably, for the top 1,000 relational facts discovered by the best existing model, the precision can be improved from 83.9% to 89.3%.
The recent advance in deep learning and semantic parsing has significantly improved the translation accuracy of natural language questions to structured queries. However, further improvement of the existing approaches turns out to be quite challenging. Rather than solely relying on algorithmic innovations, in this work, we introduce DialSQL, a dialogue-based structured query generation framework that leverages human intelligence to boost the performance of existing algorithms via user interaction. DialSQL is capable of identifying potential errors in a generated SQL query and asking users for validation via simple multi-choice questions. User feedback is then leveraged to revise the query. We design a generic simulator to bootstrap synthetic training dialogues and evaluate the performance of DialSQL on the WikiSQL dataset. Using SQLNet as a black box query generation tool, DialSQL improves its performance from 61.3% to 69.0% using only 2.4 validation questions per dialogue.
The existing factoid QA systems often lack a post-inspection component that can help models recover from their own mistakes. In this work, we propose to crosscheck the corresponding KB relations behind the predicted answers and identify potential inconsistencies. Instead of developing a new model that accepts evidences collected from these relations, we choose to plug them back to the original questions directly and check if the revised question makes sense or not. A bidirectional LSTM is applied to encode revised questions. We develop a scoring mechanism over the revised question encodings to refine the predictions of a base QA system. This approach can improve the F1 score of STAGG (Yih et al., 2015), one of the leading QA systems, from 52.5% to 53.9% on WEBQUESTIONS data.