Sara Hooker


2022

pdf
Intriguing Properties of Compression on Multilingual Models
Kelechi Ogueji | Orevaoghene Ahia | Gbemileke Onilude | Sebastian Gehrmann | Sara Hooker | Julia Kreutzer
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Multilingual models are often particularly dependent on scaling to generalize to a growing number of languages. Compression techniques are widely relied upon to reconcile the growth in model size with real world resource constraints, but compression can have a disparate effect on model performance for low-resource languages. It is thus crucial to understand the trade-offs between scale, multilingualism, and compression. In this work, we propose an experimental framework to characterize the impact of sparsifying multilingual pre-trained language models during fine-tuning.Applying this framework to mBERT named entity recognition models across 40 languages, we find that compression confers several intriguing and previously unknown generalization properties. In contrast to prior findings, we find that compression may improve model robustness over dense models. We additionally observe that under certain sparsification regimes compression may aid, rather than disproportionately impact the performance of low-resource languages.

2021

pdf
The Low-Resource Double Bind: An Empirical Study of Pruning for Low-Resource Machine Translation
Orevaoghene Ahia | Julia Kreutzer | Sara Hooker
Findings of the Association for Computational Linguistics: EMNLP 2021

A “bigger is better” explosion in the number of parameters in deep neural networks has made it increasingly challenging to make state-of-the-art networks accessible in compute-restricted environments. Compression techniques have taken on renewed importance as a way to bridge the gap. However, evaluation of the trade-offs incurred by popular compression techniques has been centered on high-resource datasets. In this work, we instead consider the impact of compression in a data-limited regime. We introduce the term low-resource double bind to refer to the co-occurrence of data limitations and compute resource constraints. This is a common setting for NLP for low-resource languages, yet the trade-offs in performance are poorly studied. Our work offers surprising insights into the relationship between capacity and generalization in data-limited regimes for the task of machine translation. Our experiments on magnitude pruning for translations from English into Yoruba, Hausa, Igbo and German show that in low-resource regimes, sparsity preserves performance on frequent sentences but has a disparate impact on infrequent ones. However, it improves robustness to out-of-distribution shifts, especially for datasets that are very distinct from the training distribution. Our findings suggest that sparsity can play a beneficial role at curbing memorization of low frequency attributes, and therefore offers a promising solution to the low-resource double bind.