Santosh Kumar Mishra
2021
A Scaled Encoder Decoder Network for Image Captioning in Hindi
Santosh Kumar Mishra
|
Sriparna Saha
|
Pushpak Bhattacharyya
Proceedings of the 18th International Conference on Natural Language Processing (ICON)
Image captioning is a prominent research area in computer vision and natural language processing, which automatically generates natural language descriptions for images. Most of the existing works have focused on developing models for image captioning in the English language. The current paper introduces a novel deep learning architecture based on encoder-decoder with an attention mechanism for image captioning in the Hindi language. For encoder, decoder, and attention, several deep learning-based architectures have been explored. Hindi, the fourth-most spoken language globally, is widely spoken in India and South Asia and is one of India’s official languages. The proposed encoder-decoder architecture utilizes scaling in convolution neural networks to achieve better accuracy than state-of-the-art image captioning methods in Hindi. The proposed method’s performance is compared with state-of-the-art methods in terms of BLEU scores and manual evaluation (in terms of adequacy and fluency). The obtained results demonstrate the efficacy of the proposed method.
Wikipedia Current Events Summarization using Particle Swarm Optimization
Santosh Kumar Mishra
|
Darsh Kaushik
|
Sriparna Saha
|
Pushpak Bhattacharyya
Proceedings of the 18th International Conference on Natural Language Processing (ICON)
This paper proposes a method to summarize news events from multiple sources. We pose event summarization as a clustering-based optimization problem and solve it using particle swarm optimization. The proposed methodology uses the search capability of particle swarm optimization, detecting the number of clusters automatically. Experiments are conducted with the Wikipedia Current Events Portal dataset and evaluated using the well-known ROUGE-1, ROUGE-2, and ROUGE-L scores. The obtained results show the efficacy of the proposed methodology over the state-of-the-art methods. It attained improvement of 33.42%, 81.75%, and 57.58% in terms of ROUGE-1, ROUGE-2, and ROUGE-L, respectively.
2020
IITP-AI-NLP-ML@ CL-SciSumm 2020, CL-LaySumm 2020, LongSumm 2020
Santosh Kumar Mishra
|
Harshavardhan Kundarapu
|
Naveen Saini
|
Sriparna Saha
|
Pushpak Bhattacharyya
Proceedings of the First Workshop on Scholarly Document Processing
The publication rate of scientific literature increases rapidly, which poses a challenge for researchers to keep themselves updated with new state-of-the-art. Scientific document summarization solves this problem by summarizing the essential fact and findings of the document. In the current paper, we present the participation of IITP-AI-NLP-ML team in three shared tasks, namely, CL-SciSumm 2020, LaySumm 2020, LongSumm 2020, which aims to generate medium, lay, and long summaries of the scientific articles, respectively. To solve CL-SciSumm 2020 and LongSumm 2020 tasks, three well-known clustering techniques are used, and then various sentence scoring functions, including textual entailment, are used to extract the sentences from each cluster for a summary generation. For LaySumm 2020, an encoder-decoder based deep learning model has been utilized. Performances of our developed systems are evaluated in terms of ROUGE measures on the associated datasets with the shared task.