Sandip Sarkar


JU NITM at IJCNLP-2017 Task 5: A Classification Approach for Answer Selection in Multi-choice Question Answering System
Sandip Sarkar | Dipankar Das | Partha Pakray
Proceedings of the IJCNLP 2017, Shared Tasks

This paper describes the participation of the JU NITM team in IJCNLP-2017 Task 5: “Multi-choice Question Answering in Examinations”. The main aim of this shared task is to choose the correct option for each multi-choice question. Our proposed model includes vector representations as feature and machine learning for classification. At first we represent question and answer in vector space and after that find the cosine similarity between those two vectors. Finally we apply classification approach to find the correct answer. Our system was only developed for the English language, and it obtained an accuracy of 40.07% for test dataset and 40.06% for valid dataset.


JUNITMZ at SemEval-2016 Task 1: Identifying Semantic Similarity Using Levenshtein Ratio
Sandip Sarkar | Dipankar Das | Partha Pakray | Alexander Gelbukh
Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016)