Creating explanations for answers to science questions is a challenging task that requires multi-hop inference over a large set of fact sentences. This year, to refocus the Textgraphs Shared Task on the problem of gathering relevant statements (rather than solely finding a single ‘correct path’), the WorldTree dataset was augmented with expert ratings of ‘relevance’ of statements to each overall explanation. Our system, which achieved second place on the Shared Task leaderboard, combines initial statement retrieval; language models trained to predict the relevance scores; and ensembling of a number of the resulting rankings. Our code implementation is made available at https://github.com/mdda/worldtree_corpus/tree/textgraphs_2021
Explainable question answering for science questions is a challenging task that requires multi-hop inference over a large set of fact sentences. To counter the limitations of methods that view each query-document pair in isolation, we propose the LSTM-Interleaved Transformer which incorporates cross-document interactions for improved multi-hop ranking. The LIT architecture can leverage prior ranking positions in the re-ranking setting. Our model is competitive on the current leaderboard for the TextGraphs 2020 shared task, achieving a test-set MAP of 0.5607, and would have gained third place had we submitted before the competition deadline. Our code implementation is made available at [https://github.com/mdda/worldtree_corpus/tree/textgraphs_2020](https://github.com/mdda/worldtree_corpus/tree/textgraphs_2020).
The TextGraphs-13 Shared Task on Explanation Regeneration (Jansen and Ustalov, 2019) asked participants to develop methods to reconstruct gold explanations for elementary science questions. Red Dragon AI’s entries used the language of the questions and explanation text directly, rather than a constructing a separate graph-like representation. Our leaderboard submission placed us 3rd in the competition, but we present here three methods of increasing sophistication, each of which scored successively higher on the test set after the competition close.
Recently, large language models such as GPT-2 have shown themselves to be extremely adept at text generation and have also been able to achieve high-quality results in many downstream NLP tasks such as text classification, sentiment analysis and question answering with the aid of fine-tuning. We present a useful technique for using a large language model to perform the task of paraphrasing on a variety of texts and subjects. Our approach is demonstrated to be capable of generating paraphrases not only at a sentence level but also for longer spans of text such as paragraphs without needing to break the text into smaller chunks.
The recent demonstration of the power of huge language models such as GPT-2 to memorise the answers to factoid questions raises questions about the extent to which knowledge is being embedded directly within these large models. This short paper describes an architecture through which much smaller models can also answer such questions - by making use of ‘raw’ external knowledge. The contribution of this work is that the methods presented here rely on unsupervised learning techniques, complementing the unsupervised training of the Language Model. The goal of this line of research is to be able to add knowledge explicitly, without extensive training.