Tasks are a fundamental unit of work in the daily lives of people, who are increasingly using digital means to keep track of, organize, triage, and act on them. These digital tools – such as task management applications – provide a unique opportunity to study and understand tasks and their connection to the real world, and through intelligent assistance, help people be more productive. By logging signals such as text, timestamp information, and social connectivity graphs, an increasingly rich and detailed picture of how tasks are created and organized, what makes them important, and who acts on them, can be progressively developed. Yet the context around actual task completion remains fuzzy, due to the basic disconnect between actions taken in the real world and telemetry recorded in the digital world. Thus, in this paper we compile and release a novel, real-life, large-scale dataset called MS-LaTTE that captures two core aspects of the context surrounding task completion: location and time. We describe our annotation framework and conduct a number of analyses on the data that were collected, demonstrating that it captures intuitive contextual properties for common tasks. Finally, we test the dataset on the two problems of predicting spatial and temporal task co-occurrence, concluding that predictors for co-location and co-time are both learnable, with a BERT fine-tuned model outperforming several other baselines. The MS-LaTTE dataset provides an opportunity to tackle many new modeling challenges in contextual task understanding and we hope that its release will spur future research in task intelligence more broadly.
People rely on digital task management tools, such as email or to-do apps, to manage their tasks. Some of these tasks are large and complex, leading to action paralysis and feelings of being overwhelmed on the part of the user. The micro-productivity literature has shown that such tasks could benefit from being decomposed and organized, in order to reduce user cognitive load. Thus in this paper, we propose a novel end-to-end pipeline that consumes a complex task and induces a dependency graph from unstructured text to represent sub-tasks and their relationships. Our solution first finds nodes for sub-tasks from multiple ‘how-to’ articles on the web by injecting a neural text generator with three key desiderata – relevance, abstraction, and consensus. Then we resolve and infer edges between these subtask nodes by learning task dependency relations. We collect a new dataset of complex tasks with their sub-task graph to develop and evaluate our solutions. Both components of our graph induction solution are evaluated in experiments, demonstrating that our models outperform a state-of-the-art text generator significantly. Our generalizable and scalable end-to-end solution has important implications for boosting user productivity and assisting with digital task management.
Intelligent features in email service applications aim to increase productivity by helping people organize their folders, compose their emails and respond to pending tasks. In this work, we explore a new application, Smart-To-Do, that helps users with task management over emails. We introduce a new task and dataset for automatically generating To-Do items from emails where the sender has promised to perform an action. We design a two-stage process leveraging recent advances in neural text generation and sequence-to-sequence learning, obtaining BLEU and ROUGE scores of 0.23 and 0.63 for this task. To the best of our knowledge, this is the first work to address the problem of composing To-Do items from emails.
Mining biomedical text offers an opportunity to automatically discover important facts and infer associations among them. As new scientific findings appear across a large collection of biomedical publications, our aim is to tap into this literature to automate biomedical knowledge extraction and identify important insights from them. Towards that goal, we develop a system with novel deep neural networks to extract insights on biomedical literature. Evaluation shows our system is able to provide insights with competitive accuracy of human acceptance and its relation extraction component outperforms previous work.