Ryan Rossi


2022

pdf
Robustness of Fusion-based Multimodal Classifiers to Cross-Modal Content Dilutions
Gaurav Verma | Vishwa Vinay | Ryan Rossi | Srijan Kumar
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

As multimodal learning finds applications in a wide variety of high-stakes societal tasks, investigating their robustness becomes important. Existing work has focused on understanding the robustness of vision-and-language models to imperceptible variations on benchmark tasks. In this work, we investigate the robustness of multimodal classifiers to cross-modal dilutions – a plausible variation. We develop a model that, given a multimodal (image + text) input, generates additional dilution text that (a) maintains relevance and topical coherence with the image and existing text, and (b) when added to the original text, leads to misclassification of the multimodal input. Via experiments on Crisis Humanitarianism and Sentiment Detection tasks, we find that the performance of task-specific fusion-based multimodal classifiers drops by 23.3% and 22.5%, respectively, in the presence of dilutions generated by our model. Metric-based comparisons with several baselines and human evaluations indicate that our dilutions show higher relevance and topical coherence, while simultaneously being more effective at demonstrating the brittleness of the multimodal classifiers. Our work aims to highlight and encourage further research on the robustness of deep multimodal models to realistic variations, especially in human-facing societal applications.

2021

pdf
Learning Contextualized Knowledge Structures for Commonsense Reasoning
Jun Yan | Mrigank Raman | Aaron Chan | Tianyu Zhang | Ryan Rossi | Handong Zhao | Sungchul Kim | Nedim Lipka | Xiang Ren
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf
Edge: Enriching Knowledge Graph Embeddings with External Text
Saed Rezayi | Handong Zhao | Sungchul Kim | Ryan Rossi | Nedim Lipka | Sheng Li
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Knowledge graphs suffer from sparsity which degrades the quality of representations generated by various methods. While there is an abundance of textual information throughout the web and many existing knowledge bases, aligning information across these diverse data sources remains a challenge in the literature. Previous work has partially addressed this issue by enriching knowledge graph entities based on “hard” co-occurrence of words present in the entities of the knowledge graphs and external text, while we achieve “soft” augmentation by proposing a knowledge graph enrichment and embedding framework named Edge. Given an original knowledge graph, we first generate a rich but noisy augmented graph using external texts in semantic and structural level. To distill the relevant knowledge and suppress the introduced noise, we design a graph alignment term in a shared embedding space between the original graph and augmented graph. To enhance the embedding learning on the augmented graph, we further regularize the locality relationship of target entity based on negative sampling. Experimental results on four benchmark datasets demonstrate the robustness and effectiveness of Edge in link prediction and node classification.