Rungsiman Nararatwong


Enhancing Financial Table and Text Question Answering with Tabular Graph and Numerical Reasoning
Rungsiman Nararatwong | Natthawut Kertkeidkachorn | Ryutaro Ichise
Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Typical financial documents consist of tables, texts, and numbers. Given sufficient training data, large language models (LM) can learn the tabular structures and perform numerical reasoning well in question answering (QA). However, their performances fall significantly when data and computational resources are limited. This study improves this performance drop by infusing explicit tabular structures through a graph neural network (GNN). We proposed a model developed from the baseline of a financial QA dataset named TAT-QA. The baseline model, TagOp, consists of answer span (evidence) extraction and numerical reasoning modules. As our main contributions, we introduced two components to the model: a GNN-based evidence extraction module for tables and an improved numerical reasoning module. The latter provides a solution to TagOp’s arithmetic calculation problem specific to operations requiring number ordering, such as subtraction and division, which account for a large portion of numerical reasoning. Our evaluation shows that the graph module has the advantage in low-resource settings, while the improved numerical reasoning significantly outperforms the baseline model.

KIQA: Knowledge-Infused Question Answering Model for Financial Table-Text Data
Rungsiman Nararatwong | Natthawut Kertkeidkachorn | Ryutaro Ichise
Proceedings of Deep Learning Inside Out (DeeLIO 2022): The 3rd Workshop on Knowledge Extraction and Integration for Deep Learning Architectures

While entity retrieval models continue to advance their capabilities, our understanding of their wide-ranging applications is limited, especially in domain-specific settings. We highlighted this issue by using recent general-domain entity-linking models, LUKE and GENRE, to inject external knowledge into a question-answering (QA) model for a financial QA task with a hybrid tabular-textual dataset. We found that both models improved the baseline model by 1.57% overall and 8.86% on textual data. Nonetheless, the challenge remains as they still struggle to handle tabular inputs. We subsequently conducted a comprehensive attention-weight analysis, revealing how LUKE utilizes external knowledge supplied by GENRE. The analysis also elaborates how the injection of symbolic knowledge can be helpful and what needs further improvement, paving the way for future research on this challenging QA task and advancing our understanding of how a language model incorporates external knowledge.

iLab at FinCausal 2022: Enhancing Causality Detection with an External Cause-Effect Knowledge Graph
Ziwei Xu | Rungsiman Nararatwong | Natthawut Kertkeidkachorn | Ryutaro Ichise
Proceedings of the 4th Financial Narrative Processing Workshop @LREC2022

The application of span detection grows fast along with the increasing need of understanding the causes and effects of events, especially in the finance domain. However, once the syntactic clues are absent in the text, the model tends to reverse the cause and effect spans. To solve this problem, we introduce graph construction techniques to inject cause-effect graph knowledge for graph embedding. The graph features combining with BERT embedding, then are used to predict the cause effect spans. The results show our proposed graph builder method outperforms the other methods w/wo external knowledge.