Ruijian Cai


2021

pdf
Heterogeneous Graph Neural Networks for Keyphrase Generation
Jiacheng Ye | Ruijian Cai | Tao Gui | Qi Zhang
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

The encoder–decoder framework achieves state-of-the-art results in keyphrase generation (KG) tasks by predicting both present keyphrases that appear in the source document and absent keyphrases that do not. However, relying solely on the source document can result in generating uncontrollable and inaccurate absent keyphrases. To address these problems, we propose a novel graph-based method that can capture explicit knowledge from related references. Our model first retrieves some document-keyphrases pairs similar to the source document from a pre-defined index as references. Then a heterogeneous graph is constructed to capture relations with different levels of granularity of the source document and its retrieved references. To guide the decoding process, a hierarchical attention and copy mechanism is introduced, which directly copies appropriate words from both source document and its references based on their relevance and significance. The experimental results on multiple KG benchmarks show that the proposed model achieves significant improvements against other baseline models, especially with regard to the absent keyphrase prediction.

pdf
TextFlint: Unified Multilingual Robustness Evaluation Toolkit for Natural Language Processing
Xiao Wang | Qin Liu | Tao Gui | Qi Zhang | Yicheng Zou | Xin Zhou | Jiacheng Ye | Yongxin Zhang | Rui Zheng | Zexiong Pang | Qinzhuo Wu | Zhengyan Li | Chong Zhang | Ruotian Ma | Zichu Fei | Ruijian Cai | Jun Zhao | Xingwu Hu | Zhiheng Yan | Yiding Tan | Yuan Hu | Qiyuan Bian | Zhihua Liu | Shan Qin | Bolin Zhu | Xiaoyu Xing | Jinlan Fu | Yue Zhang | Minlong Peng | Xiaoqing Zheng | Yaqian Zhou | Zhongyu Wei | Xipeng Qiu | Xuanjing Huang
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing: System Demonstrations

TextFlint is a multilingual robustness evaluation toolkit for NLP tasks that incorporates universal text transformation, task-specific transformation, adversarial attack, subpopulation, and their combinations to provide comprehensive robustness analyses. This enables practitioners to automatically evaluate their models from various aspects or to customize their evaluations as desired with just a few lines of code. TextFlint also generates complete analytical reports as well as targeted augmented data to address the shortcomings of the model in terms of its robustness. To guarantee acceptability, all the text transformations are linguistically based and all the transformed data selected (up to 100,000 texts) scored highly under human evaluation. To validate the utility, we performed large-scale empirical evaluations (over 67,000) on state-of-the-art deep learning models, classic supervised methods, and real-world systems. The toolkit is already available at https://github.com/textflint with all the evaluation results demonstrated at textflint.io.