Rohan Bhambhoria


2022

pdf
Parameter-Efficient Legal Domain Adaptation
Jonathan Li | Rohan Bhambhoria | Xiaodan Zhu
Proceedings of the Natural Legal Language Processing Workshop 2022

Seeking legal advice is often expensive. Recent advancements in machine learning for solving complex problems can be leveraged to help make legal services more accessible to the public. However, real-life applications encounter significant challenges. State-of-the-art language models are growing increasingly large, making parameter-efficient learning increasingly important. Unfortunately, parameter-efficient methods perform poorly with small amounts of data, which are common in the legal domain (where data labelling costs are high). To address these challenges, we propose parameter-efficient legal domain adaptation, which uses vast unsupervised legal data from public legal forums to perform legal pre-training. This method exceeds or matches the fewshot performance of existing models such as LEGAL-BERT on various legal tasks while tuning only approximately 0.1% of model parameters. Additionally, we show that our method can achieve calibration comparable to existing methods across several tasks. To the best of our knowledge, this work is among the first to explore parameter-efficient methods of tuning language models in the legal domain.

2020

pdf
A Smart System to Generate and Validate Question Answer Pairs for COVID-19 Literature
Rohan Bhambhoria | Luna Feng | Dawn Sepehr | John Chen | Conner Cowling | Sedef Kocak | Elham Dolatabadi
Proceedings of the First Workshop on Scholarly Document Processing

Automatically generating question answer (QA) pairs from the rapidly growing coronavirus-related literature is of great value to the medical community. Creating high quality QA pairs would allow researchers to build models to address scientific queries for answers which are not readily available in support of the ongoing fight against the pandemic. QA pair generation is, however, a very tedious and time consuming task requiring domain expertise for annotation and evaluation. In this paper we present our contribution in addressing some of the challenges of building a QA system without gold data. We first present a method to create QA pairs from a large semi-structured dataset through the use of transformer and rule-based models. Next, we propose a means of engaging subject matter experts (SMEs) for annotating the QA pairs through the usage of a web application. Finally, we demonstrate some experiments showcasing the effectiveness of leveraging active learning in designing a high performing model with a substantially lower annotation effort from the domain experts.