Robert Vacareanu


A Human-machine Interface for Few-shot Rule Synthesis for Information Extraction
Robert Vacareanu | George C.G. Barbosa | Enrique Noriega-Atala | Gus Hahn-Powell | Rebecca Sharp | Marco A. Valenzuela-Escárcega | Mihai Surdeanu
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: System Demonstrations

We propose a system that assists a user in constructing transparent information extraction models, consisting of patterns (or rules) written in a declarative language, through program synthesis.Users of our system can specify their requirements through the use of examples,which are collected with a search interface.The rule-synthesis system proposes rule candidates and the results of applying them on a textual corpus; the user has the option to accept the candidate, request another option, or adjust the examples provided to the system.Through an interactive evaluation, we show that our approach generates high-precision rules even in a 1-shot setting. On a second evaluation on a widely-used relation extraction dataset (TACRED), our method generates rules that outperform considerably manually written patterns.Our code, demo, and documentation is available at

pdf bib
PatternRank: Jointly Ranking Patterns and Extractions for Relation Extraction Using Graph-Based Algorithms
Robert Vacareanu | Dane Bell | Mihai Surdeanu
Proceedings of the First Workshop on Pattern-based Approaches to NLP in the Age of Deep Learning

In this paper we revisit the direction of using lexico-syntactic patterns for relation extraction instead of today’s ubiquitous neural classifiers. We propose a semi-supervised graph-based algorithm for pattern acquisition that scores patterns and the relations they extract jointly, using a variant of PageRank. We insert light supervision in the form of seed patterns or relations, and model it with several custom teleportation probabilities that bias random-walk scores of patterns/relations based on their proximity to correct information. We evaluate our approach on Few-Shot TACRED, and show that our method outperforms (or performs competitively with) more expensive and opaque deep neural networks. Lastly, we thoroughly compare our proposed approach with the seminal RlogF pattern acquisition algorithm of, showing that it outperforms it for all the hyper parameters tested, in all settings.

Neural-Guided Program Synthesis of Information Extraction Rules Using Self-Supervision
Enrique Noriega-Atala | Robert Vacareanu | Gus Hahn-Powell | Marco A. Valenzuela-Escárcega
Proceedings of the First Workshop on Pattern-based Approaches to NLP in the Age of Deep Learning

We propose a neural-based approach for rule synthesis designed to help bridge the gap between the interpretability, precision and maintainability exhibited by rule-based information extraction systems with the scalability and convenience of statistical information extraction systems. This is achieved by avoiding placing the burden of learning another specialized language on domain experts and instead asking them to provide a small set of examples in the form of highlighted spans of text. We introduce a transformer-based architecture that drives a rule synthesis system that leverages a self-supervised approach for pre-training a large-scale language model complemented by an analysis of different loss functions and aggregation mechanisms for variable length sequences of user-annotated spans of text. The results are encouraging and point to different desirable properties, such as speed and quality, depending on the choice of loss and aggregation method.

From Examples to Rules: Neural Guided Rule Synthesis for Information Extraction
Robert Vacareanu | Marco A. Valenzuela-Escárcega | George Caique Gouveia Barbosa | Rebecca Sharp | Gustave Hahn-Powell | Mihai Surdeanu
Proceedings of the Thirteenth Language Resources and Evaluation Conference

While deep learning approaches to information extraction have had many successes, they can be difficult to augment or maintain as needs shift. Rule-based methods, on the other hand, can be more easily modified. However, crafting rules requires expertise in linguistics and the domain of interest, making it infeasible for most users. Here we attempt to combine the advantages of these two directions while mitigating their drawbacks. We adapt recent advances from the adjacent field of program synthesis to information extraction, synthesizing rules from provided examples. We use a transformer-based architecture to guide an enumerative search, and show that this reduces the number of steps that need to be explored before a rule is found. Further, we show that without training the synthesis algorithm on the specific domain, our synthesized rules achieve state-of-the-art performance on the 1-shot scenario of a task that focuses on few-shot learning for relation classification, and competitive performance in the 5-shot scenario.


Parsing as Tagging
Robert Vacareanu | George Caique Gouveia Barbosa | Marco A. Valenzuela-Escárcega | Mihai Surdeanu
Proceedings of the Twelfth Language Resources and Evaluation Conference

We propose a simple yet accurate method for dependency parsing that treats parsing as tagging (PaT). That is, our approach addresses the parsing of dependency trees with a sequence model implemented with a bidirectional LSTM over BERT embeddings, where the “tag” to be predicted at each token position is the relative position of the corresponding head. For example, for the sentence John eats cake, the tag to be predicted for the token cake is -1 because its head (eats) occurs one token to the left. Despite its simplicity, our approach performs well. For example, our approach outperforms the state-of-the-art method of (Fernández-González and Gómez-Rodríguez, 2019) on Universal Dependencies (UD) by 1.76% unlabeled attachment score (UAS) for English, 1.98% UAS for French, and 1.16% UAS for German. On average, on 12 UD languages, our method with minimal tuning performs comparably with this state-of-the-art approach: better by 0.11% UAS, and worse by 0.58% LAS.

An Unsupervised Method for Learning Representations of Multi-word Expressions for Semantic Classification
Robert Vacareanu | Marco A. Valenzuela-Escárcega | Rebecca Sharp | Mihai Surdeanu
Proceedings of the 28th International Conference on Computational Linguistics

This paper explores an unsupervised approach to learning a compositional representation function for multi-word expressions (MWEs), and evaluates it on the Tratz dataset, which associates two-word expressions with the semantic relation between the compound constituents (e.g. the label employer is associated with the noun compound government agency) (Tratz, 2011). The composition function is based on recurrent neural networks, and is trained using the Skip-Gram objective to predict the words in the context of MWEs. Thus our approach can naturally leverage large unlabeled text sources. Further, our method can make use of provided MWEs when available, but can also function as a completely unsupervised algorithm, using MWE boundaries predicted by a single, domain-agnostic part-of-speech pattern. With pre-defined MWE boundaries, our method outperforms the previous state-of-the-art performance on the coarse-grained evaluation of the Tratz dataset (Tratz, 2011), with an F1 score of 50.4%. The unsupervised version of our method approaches the performance of the supervised one, and even outperforms it in some configurations.