Modelling persuasion strategies as predictors of task outcome has several real-world applications and has received considerable attention from the computational linguistics community. However, previous research has failed to account for the resisting strategies employed by an individual to foil such persuasion attempts. Grounded in prior literature in cognitive and social psychology, we propose a generalised framework for identifying resisting strategies in persuasive conversations. We instantiate our framework on two distinct datasets comprising persuasion and negotiation conversations. We also leverage a hierarchical sequence-labelling neural architecture to infer the aforementioned resisting strategies automatically. Our experiments reveal the asymmetry of power roles in non-collaborative goal-directed conversations and the benefits accrued from incorporating resisting strategies on the final conversation outcome. We also investigate the role of different resisting strategies on the conversation outcome and glean insights that corroborate with past findings. We also make the code and the dataset of this work publicly available at
https://github.com/americast/resper.
In this paper we describe our submission for the task of Propaganda Span Identification in news articles. We introduce a BERT-BiLSTM based span-level propaganda classification model that identifies which token spans within the sentence are indicative of propaganda. The ”multi-granular” model incorporates linguistic knowledge at various levels of text granularity, including word, sentence and document level syntactic, semantic and pragmatic affect features, which significantly improve model performance, compared to its language-agnostic variant. To facilitate better representation learning, we also collect a corpus of 10k news articles, and use it for fine-tuning the model. The final model is a majority-voting ensemble which learns different propaganda class boundaries by leveraging different subsets of incorporated knowledge.
The problem of building a coherent and non-monotonous conversational agent with proper discourse and coverage is still an area of open research. Current architectures only take care of semantic and contextual information for a given query and fail to completely account for syntactic and external knowledge which are crucial for generating responses in a chit-chat system. To overcome this problem, we propose an end to end multi-stream deep learning architecture that learns unified embeddings for query-response pairs by leveraging contextual information from memory networks and syntactic information by incorporating Graph Convolution Networks (GCN) over their dependency parse. A stream of this network also utilizes transfer learning by pre-training a bidirectional transformer to extract semantic representation for each input sentence and incorporates external knowledge through the neighborhood of the entities from a Knowledge Base (KB). We benchmark these embeddings on the next sentence prediction task and significantly improve upon the existing techniques. Furthermore, we use AMUSED to represent query and responses along with its context to develop a retrieval based conversational agent which has been validated by expert linguists to have comprehensive engagement with humans.
The notion of face refers to the public self-image of an individual that emerges both from the individual’s own actions as well as from the interaction with others. Modeling face and understanding its state changes throughout a conversation is critical to the study of maintenance of basic human needs in and through interaction. Grounded in the politeness theory of Brown and Levinson (1978), we propose a generalized framework for modeling face acts in persuasion conversations, resulting in a reliable coding manual, an annotated corpus, and computational models. The framework reveals insights about differences in face act utilization between asymmetric roles in persuasion conversations. Using computational models, we are able to successfully identify face acts as well as predict a key conversational outcome (e.g. donation success). Finally, we model a latent representation of the conversational state to analyze the impact of predicted face acts on the probability of a positive conversational outcome and observe several correlations that corroborate previous findings.
Distantly-supervised Relation Extraction (RE) methods train an extractor by automatically aligning relation instances in a Knowledge Base (KB) with unstructured text. In addition to relation instances, KBs often contain other relevant side information, such as aliases of relations (e.g., founded and co-founded are aliases for the relation founderOfCompany). RE models usually ignore such readily available side information. In this paper, we propose RESIDE, a distantly-supervised neural relation extraction method which utilizes additional side information from KBs for improved relation extraction. It uses entity type and relation alias information for imposing soft constraints while predicting relations. RESIDE employs Graph Convolution Networks (GCN) to encode syntactic information from text and improves performance even when limited side information is available. Through extensive experiments on benchmark datasets, we demonstrate RESIDE’s effectiveness. We have made RESIDE’s source code available to encourage reproducible research.