Pre-editing is the process of modifying the source text (ST) so that it can be translated by machine translation (MT) in a better quality. Despite the unpredictability of black-box neural MT (NMT), pre-editing has been deployed in various practical MT use cases. Although many studies have demonstrated the effectiveness of pre-editing methods for particular settings, thus far, a deep understanding of what pre-editing is and how it works for black-box NMT is lacking. To elicit such understanding, we extensively investigated human pre-editing practices. We first implemented a protocol to incrementally record the minimum edits for each ST and collected 6,652 instances of pre-editing across three translation directions, two MT systems, and four text domains. We then analysed the instances from three perspectives: the characteristics of the pre-edited ST, the diversity of pre-editing operations, and the impact of the pre-editing operations on NMT outputs. Our findings include the following: (1) enhancing the explicitness of the meaning of an ST and its syntactic structure is more important for obtaining better translations than making the ST shorter and simpler, and (2) although the impact of pre-editing on NMT is generally unpredictable, there are some tendencies of changes in the NMT outputs depending on the editing operation types.
Japanese sentence-ending predicates intricately combine content words and functional elements, such as aspect, modality, and honorifics; this can often hinder the understanding of language learners and children. Conventional lexical simplification methods, which replace difficult target words with simpler synonyms acquired from lexical resources in a word-by-word manner, are not always suitable for the simplification of such Japanese predicates. Given this situation, we propose a BERT-based simplification method, the core feature of which is the high ability to substitute the whole predicates with simple ones while maintaining their core meanings in the context by utilizing pre-trained masked language models. Experimental results showed that our proposed methods consistently outperformed the conventional thesaurus-based method by a wide margin. Furthermore, we investigated in detail the effectiveness of the average token embedding and dropout, and the remaining errors of our BERT-based methods.
This paper presents the construction and evaluation of Japanese and English controlled bilingual terminologies that are particularly intended for controlled authoring and machine translation with special reference to the Japanese municipal domain. Our terminologies are constructed by extracting terms from municipal website texts, and the term variations are controlled by defining preferred and proscribed terms for both the source Japanese and the target English. To assess the coverage of the terms/concepts in the municipal domain and validate the quality of the control, we employ a quantitative extrapolation method that estimates the potential vocabulary size. Using Large-Number-of-Rare-Event (LNRE) modelling, we compare two parameters: (1) uncontrolled and controlled and (2) Japanese and English. The results show that our terminologies currently cover about 45–65% of the terms and 50–65% of the concepts in the municipal domain, and are well controlled. The detailed analysis of growth patterns of terminologies also provides insight into the extent to which we can enlarge the terminologies within the realistic range.
The paper introduces a web-based authoring support system, MuTUAL, which aims to help writers create multilingual texts. The highlighted feature of the system is that it enables machine translation (MT) to generate outputs appropriate to their functional context within the target document. Our system is operational online, implementing core mechanisms for document structuring and controlled writing. These include a topic template and a controlled language authoring assistant, linked to our statistical MT system.