Raymond Li


Human Guided Exploitation of Interpretable Attention Patterns in Summarization and Topic Segmentation
Raymond Li | Wen Xiao | Linzi Xing | Lanjun Wang | Gabriel Murray | Giuseppe Carenini
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

The multi-head self-attention mechanism of the transformer model has been thoroughly investigated recently. In one vein of study, researchers are interested in understanding why and how transformers work. In another vein, researchers propose new attention augmentation methods to make transformers more accurate, efficient and interpretable. In this paper, we combine these two lines of research in a human-in-the-loop pipeline to first discover important task-specific attention patterns. Then those patterns are injected, not only to smaller models, but also to the original model. The benefits of our pipeline and discovered patterns are demonstrated in two case studies with extractive summarization and topic segmentation. After discovering interpretable patterns in BERT-based models fine-tuned for the two downstream tasks, experiments indicate that when we inject the patterns into attention heads, the models show considerable improvements in accuracy and efficiency.


T3-Vis: visual analytic for Training and fine-Tuning Transformers in NLP
Raymond Li | Wen Xiao | Lanjun Wang | Hyeju Jang | Giuseppe Carenini
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

Transformers are the dominant architecture in NLP, but their training and fine-tuning is still very challenging. In this paper, we present the design and implementation of a visual analytic framework for assisting researchers in such process, by providing them with valuable insights about the model’s intrinsic properties and behaviours. Our framework offers an intuitive overview that allows the user to explore different facets of the model (e.g., hidden states, attention) through interactive visualization, and allows a suite of built-in algorithms that compute the importance of model components and different parts of the input sequence. Case studies and feedback from a user focus group indicate that the framework is useful, and suggest several improvements. Our framework is available at: https://github.com/raymondzmc/T3-Vis.

DuoRAT: Towards Simpler Text-to-SQL Models
Torsten Scholak | Raymond Li | Dzmitry Bahdanau | Harm de Vries | Chris Pal
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Recent neural text-to-SQL models can effectively translate natural language questions to corresponding SQL queries on unseen databases. Working mostly on the Spider dataset, researchers have proposed increasingly sophisticated solutions to the problem. Contrary to this trend, in this paper we focus on simplifications. We begin by building DuoRAT, a re-implementation of the state-of-the-art RAT-SQL model that unlike RAT-SQL is using only relation-aware or vanilla transformers as the building blocks. We perform several ablation experiments using DuoRAT as the baseline model. Our experiments confirm the usefulness of some techniques and point out the redundancy of others, including structural SQL features and features that link the question with the schema.


On Extractive and Abstractive Neural Document Summarization with Transformer Language Models
Jonathan Pilault | Raymond Li | Sandeep Subramanian | Chris Pal
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

We present a method to produce abstractive summaries of long documents that exceed several thousand words via neural abstractive summarization. We perform a simple extractive step before generating a summary, which is then used to condition the transformer language model on relevant information before being tasked with generating a summary. We also show that this approach produces more abstractive summaries compared to prior work that employs a copy mechanism while still achieving higher ROUGE scores. We provide extensive comparisons with strong baseline methods, prior state of the art work as well as multiple variants of our approach including those using only transformers, only extractive techniques and combinations of the two. We examine these models using four different summarization tasks and datasets: arXiv papers, PubMed papers, the Newsroom and BigPatent datasets. We find that transformer based methods produce summaries with fewer n-gram copies, leading to n-gram copying statistics that are more similar to human generated abstracts. We include a human evaluation, finding that transformers are ranked highly for coherence and fluency, but purely extractive methods score higher for informativeness and relevance. We hope that these architectures and experiments may serve as strong points of comparison for future work. Note: The abstract above was collaboratively written by the authors and one of the models presented in this paper based on an earlier draft of this paper.