Ravi Tej Akella


2020

pdf
Reinforced Multi-task Approach for Multi-hop Question Generation
Deepak Gupta | Hardik Chauhan | Ravi Tej Akella | Asif Ekbal | Pushpak Bhattacharyya
Proceedings of the 28th International Conference on Computational Linguistics

Question generation (QG) attempts to solve the inverse of question answering (QA) problem by generating a natural language question given a document and an answer. While sequence to sequence neural models surpass rule-based systems for QG, they are limited in their capacity to focus on more than one supporting fact. For QG, we often require multiple supporting facts to generate high-quality questions. Inspired by recent works on multi-hop reasoning in QA, we take up Multi-hop question generation, which aims at generating relevant questions based on supporting facts in the context. We employ multitask learning with the auxiliary task of answer-aware supporting fact prediction to guide the question generator. In addition, we also proposed a question-aware reward function in a Reinforcement Learning (RL) framework to maximize the utilization of the supporting facts. We demonstrate the effectiveness of our approach through experiments on the multi-hop question answering dataset, HotPotQA. Empirical evaluation shows our model to outperform the single-hop neural question generation models on both automatic evaluation metrics such as BLEU, METEOR, and ROUGE and human evaluation metrics for quality and coverage of the generated questions.