Raghav R.

Also published as: Raghav R


An Evaluation Framework for Legal Document Summarization
Ankan Mullick | Abhilash Nandy | Manav Kapadnis | Sohan Patnaik | Raghav R | Roshni Kar
Proceedings of the Thirteenth Language Resources and Evaluation Conference

A law practitioner has to go through numerous lengthy legal case proceedings for their practices of various categories, such as land dispute, corruption, etc. Hence, it is important to summarize these documents, and ensure that summaries contain phrases with intent matching the category of the case. To the best of our knowledge, there is no evaluation metric that evaluates a summary based on its intent. We propose an automated intent-based summarization metric, which shows a better agreement with human evaluation as compared to other automated metrics like BLEU, ROUGE-L etc. in terms of human satisfaction. We also curate a dataset by annotating intent phrases in legal documents, and show a proof of concept as to how this system can be automated.

ETMS@IITKGP at SemEval-2022 Task 10: Structured Sentiment Analysis Using A Generative Approach
Raghav R | Adarsh Vemali | Rajdeep Mukherjee
Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)

Structured Sentiment Analysis (SSA) deals with extracting opinion tuples in a text, where each tuple (h, e, t, p) consists of h, the holder, who expresses a sentiment polarity p towards a target t through a sentiment expression e. While prior works explore graph-based or sequence labeling-based approaches for the task, we in this paper present a novel unified generative method to solve SSA, a SemEval2022 shared task. We leverage a BART-based encoder-decoder architecture and suitably modify it to generate, given a sentence, a sequence of opinion tuples. Each generated tuple consists of seven integers respectively representing the indices corresponding to the start and end positions of the holder, target, and expression spans, followed by the sentiment polarity class associated between the target and the sentiment expression. We perform rigorous experiments for both Monolingual and Cross-lingual subtasks, and achieve competitive Sentiment F1 scores on the leaderboard in both settings.


SSN-NLP at SemEval-2020 Task 4: Text Classification and Generation on Common Sense Context Using Neural Networks
Rishivardhan K. | Kayalvizhi S | Thenmozhi D. | Raghav R. | Kshitij Sharma
Proceedings of the Fourteenth Workshop on Semantic Evaluation

Common sense validation deals with testing whether a system can differentiate natural language statements that make sense from those that do not make sense. This paper describes the our approach to solve this challenge. For common sense validation with multi choice, we propose a stacking based approach to classify sentences that are more favourable in terms of common sense to the particular statement. We have used majority voting classifier methodology amongst three models such as Bidirectional Encoder Representations from Transformers (BERT), Micro Text Classification (Micro TC) and XLNet. For sentence generation, we used Neural Machine Translation (NMT) model to generate explanatory sentences.