Qiuyuan Huang


2022

pdf
KAT: A Knowledge Augmented Transformer for Vision-and-Language
Liangke Gui | Borui Wang | Qiuyuan Huang | Alexander Hauptmann | Yonatan Bisk | Jianfeng Gao
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

The primary focus of recent work with large-scale transformers has been on optimizing the amount of information packed into the model’s parameters. In this work, we ask a complementary question: Can multimodal transformers leverage explicit knowledge in their reasoning? Existing, primarily unimodal, methods have explored approaches under the paradigm of knowledge retrieval followed by answer prediction, but leave open questions about the quality and relevance of the retrieved knowledge used, and how the reasoning processes over implicit and explicit knowledge should be integrated. To address these challenges, we propose a - Knowledge Augmented Transformer (KAT) - which achieves a strong state-of-the-art result (+6% absolute) on the open-domain multimodal task of OK-VQA. Our approach integrates implicit and explicit knowledge in an encoder-decoder architecture, while still jointly reasoning over both knowledge sources during answer generation. Additionally, explicit knowledge integration improves interpretability of model predictions in our analysis.

2021

pdf
NICE: Neural Image Commenting with Empathy
Kezhen Chen | Qiuyuan Huang | Daniel McDuff | Xiang Gao | Hamid Palangi | Jianfeng Wang | Kenneth Forbus | Jianfeng Gao
Findings of the Association for Computational Linguistics: EMNLP 2021

Emotion and empathy are examples of human qualities lacking in many human-machine interactions. The goal of our work is to generate engaging dialogue grounded in a user-shared image with increased emotion and empathy while minimizing socially inappropriate or offensive outputs. We release the Neural Image Commenting with Empathy (NICE) dataset consisting of almost two million images and the corresponding human-generated comments, a set of human annotations, and baseline performance on a range of models. In-stead of relying on manually labeled emotions, we also use automatically generated linguistic representations as a source of weakly supervised labels. Based on these annotations, we define two different tasks for the NICE dataset. Then, we propose a novel pre-training model - Modeling Affect Generation for Image Comments (MAGIC) - which aims to generate comments for images, conditioned on linguistic representations that capture style and affect, and to help generate more empathetic, emotional, engaging and socially appropriate comments. Using this model we achieve state-of-the-art performance on one of our NICE tasks. The experiments show that the approach can generate more human-like and engaging image comments.

2019

pdf
REO-Relevance, Extraness, Omission: A Fine-grained Evaluation for Image Captioning
Ming Jiang | Junjie Hu | Qiuyuan Huang | Lei Zhang | Jana Diesner | Jianfeng Gao
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Popular metrics used for evaluating image captioning systems, such as BLEU and CIDEr, provide a single score to gauge the system’s overall effectiveness. This score is often not informative enough to indicate what specific errors are made by a given system. In this study, we present a fine-grained evaluation method REO for automatically measuring the performance of image captioning systems. REO assesses the quality of captions from three perspectives: 1) Relevance to the ground truth, 2) Extraness of the content that is irrelevant to the ground truth, and 3) Omission of the elements in the images and human references. Experiments on three benchmark datasets demonstrate that our method achieves a higher consistency with human judgments and provides more intuitive evaluation results than alternative metrics.

pdf
TIGEr: Text-to-Image Grounding for Image Caption Evaluation
Ming Jiang | Qiuyuan Huang | Lei Zhang | Xin Wang | Pengchuan Zhang | Zhe Gan | Jana Diesner | Jianfeng Gao
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

This paper presents a new metric called TIGEr for the automatic evaluation of image captioning systems. Popular metrics, such as BLEU and CIDEr, are based solely on text matching between reference captions and machine-generated captions, potentially leading to biased evaluations because references may not fully cover the image content and natural language is inherently ambiguous. Building upon a machine-learned text-image grounding model, TIGEr allows to evaluate caption quality not only based on how well a caption represents image content, but also on how well machine-generated captions match human-generated captions. Our empirical tests show that TIGEr has a higher consistency with human judgments than alternative existing metrics. We also comprehensively assess the metric’s effectiveness in caption evaluation by measuring the correlation between human judgments and metric scores.

2018

pdf
Tensor Product Generation Networks for Deep NLP Modeling
Qiuyuan Huang | Paul Smolensky | Xiaodong He | Li Deng | Dapeng Wu
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

We present a new approach to the design of deep networks for natural language processing (NLP), based on the general technique of Tensor Product Representations (TPRs) for encoding and processing symbol structures in distributed neural networks. A network architecture — the Tensor Product Generation Network (TPGN) — is proposed which is capable in principle of carrying out TPR computation, but which uses unconstrained deep learning to design its internal representations. Instantiated in a model for image-caption generation, TPGN outperforms LSTM baselines when evaluated on the COCO dataset. The TPR-capable structure enables interpretation of internal representations and operations, which prove to contain considerable grammatical content. Our caption-generation model can be interpreted as generating sequences of grammatical categories and retrieving words by their categories from a plan encoded as a distributed representation.