Qinlong Wang


CoCoID: Learning Contrastive Representations and Compact Clusters for Semi-Supervised Intent Discovery
Qian Cao | Deyi Xiong | Qinlong Wang | Xia Peng
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: Industry Track

Intent discovery is to mine new intents from user utterances, which are not present in the set of manually predefined intents. Previous approaches to intent discovery usually automatically cluster novel intents with prior knowledge from intent-labeled data in a semi-supervised way. In this paper, we focus on the discriminative user utterance representation learning and the compactness of the learned intent clusters. We propose a novel semi-supervised intent discovery framework CoCoID with two essential components: contrastive user utterance representation learning and intra-cluster knowledge distillation. The former attempts to detect similar and dissimilar intents from a minibatch-wise perspective. The latter regularizes the predictive distribution of the model over samples in a cluster-wise way. We conduct experiments on both real-life challenging datasets (i.e., CLINC and BANKING) that are curated to emulate the true environment of commercial/production systems and traditional datasets (i.e., StackOverflow and DBPedia) to evaluate the proposed CoCoID. Experiment results demonstrate that our model substantially outperforms state-of-the-art intent discovery models (12 baselines) by over 1.4 ACC and ARI points and 1.1 NMI points across the four datasets. Further analyses suggest that CoCoID is able to learn contrastive representations and compact clusters for intent discovery.


A Nested Attention Neural Hybrid Model for Grammatical Error Correction
Jianshu Ji | Qinlong Wang | Kristina Toutanova | Yongen Gong | Steven Truong | Jianfeng Gao
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Grammatical error correction (GEC) systems strive to correct both global errors inword order and usage, and local errors inspelling and inflection. Further developing upon recent work on neural machine translation, we propose a new hybrid neural model with nested attention layers for GEC.Experiments show that the new model can effectively correct errors of both types by incorporating word and character-level information, and that the model significantly outperforms previous neural models for GEC as measured on the standard CoNLL-14 benchmark dataset.Further analysis also shows that the superiority of the proposed model can be largely attributed to the use of the nested attention mechanism, which has proven particularly effective incorrecting local errors that involve small edits in orthography.