Visual Question Answering (VQA) models are prone to learn the shortcut solution formed by dataset biases rather than the intended solution. To evaluate the VQA models’ reasoning ability beyond shortcut learning, the VQA-CP v2 dataset introduces a distribution shift between the training and test set given a question type. In this way, the model cannot use the training set shortcut (from question type to answer) to perform well on the test set. However, VQA-CP v2 only considers one type of shortcut and thus still cannot guarantee that the model relies on the intended solution rather than a solution specific to this shortcut. To overcome this limitation, we propose a new dataset that considers varying types of shortcuts by constructing different distribution shifts in multiple OOD test sets. In addition, we overcome the three troubling practices in the use of VQA-CP v2, e.g., selecting models using OOD test sets, and further standardize OOD evaluation procedure. Our benchmark provides a more rigorous and comprehensive testbed for shortcut learning in VQA. We benchmark recent methods and find that methods specifically designed for particular shortcuts fail to simultaneously generalize to our varying OOD test sets. We also systematically study the varying shortcuts and provide several valuable findings, which may promote the exploration of shortcut learning in VQA.
Models for Visual Question Answering (VQA) often rely on the spurious correlations, i.e., the language priors, that appear in the biased samples of training set, which make them brittle against the out-of-distribution (OOD) test data. Recent methods have achieved promising progress in overcoming this problem by reducing the impact of biased samples on model training. However, these models reveal a trade-off that the improvements on OOD data severely sacrifice the performance on the in-distribution (ID) data (which is dominated by the biased samples). Therefore, we propose a novel contrastive learning approach, MMBS, for building robust VQA models by Making the Most of Biased Samples. Specifically, we construct positive samples for contrastive learning by eliminating the information related to spurious correlation from the original training samples and explore several strategies to use the constructed positive samples for training. Instead of undermining the importance of biased samples in model training, our approach precisely exploits the biased samples for unbiased information that contributes to reasoning. The proposed method is compatible with various VQA backbones. We validate our contributions by achieving competitive performance on the OOD dataset VQA-CP v2 while preserving robust performance on the ID dataset VQA v2.
While sophisticated neural-based models have achieved remarkable success in Visual Question Answering (VQA), these models tend to answer questions only according to superficial correlations between question and answer. Several recent approaches have been developed to address this language priors problem. However, most of them predict the correct answer according to one best output without checking the authenticity of answers. Besides, they only explore the interaction between image and question, ignoring the semantics of candidate answers. In this paper, we propose a select-and-rerank (SAR) progressive framework based on Visual Entailment. Specifically, we first select the candidate answers relevant to the question or the image, then we rerank the candidate answers by a visual entailment task, which verifies whether the image semantically entails the synthetic statement of the question and each candidate answer. Experimental results show the effectiveness of our proposed framework, which establishes a new state-of-the-art accuracy on VQA-CP v2 with a 7.55% improvement.