Qing Sun


2022

pdf
Learning to Revise References for Faithful Summarization
Griffin Adams | Han-Chin Shing | Qing Sun | Christopher Winestock | Kathleen McKeown | Noémie Elhadad
Findings of the Association for Computational Linguistics: EMNLP 2022

In real-world scenarios with naturally occurring datasets, reference summaries are noisy and may contain information that cannot be inferred from the source text. On large news corpora, removing low quality samples has been shown to reduce model hallucinations. Yet, for smaller, and/or noisier corpora, filtering is detrimental to performance. To improve reference quality while retaining all data, we propose a new approach: to selectively re-write unsupported reference sentences to better reflect source data. We automatically generate a synthetic dataset of positive and negative revisions by corrupting supported sentences and learn to revise reference sentences with contrastive learning. The intensity of revisions is treated as a controllable attribute so that, at inference, diverse candidates can be over-generated-then-rescored to balance faithfulness and abstraction. To test our methods, we extract noisy references from publicly available MIMIC-III discharge summaries for the task of hospital-course summarization, and vary the data on which models are trained. According to metrics and human evaluation, models trained on revised clinical references are much more faithful, informative, and fluent than models trained on original or filtered data.

2021

pdf
Neural Entity Recognition with Gazetteer based Fusion
Qing Sun | Parminder Bhatia
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

2020

pdf
An Empirical Investigation Towards Efficient Multi-Domain Language Model Pre-training
Kristjan Arumae | Qing Sun | Parminder Bhatia
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Pre-training large language models has become a standard in the natural language processing community. Such models are pre-trained on generic data (e.g. BookCorpus and English Wikipedia) and often fine-tuned on tasks in the same domain. However, in order to achieve state-of-the-art performance on out of domain tasks such as clinical named entity recognition and relation extraction, additional in domain pre-training is required. In practice, staged multi-domain pre-training presents performance deterioration in the form of catastrophic forgetting (CF) when evaluated on a generic benchmark such as GLUE. In this paper we conduct an empirical investigation into known methods to mitigate CF. We find that elastic weight consolidation provides best overall scores yielding only a 0.33% drop in performance across seven generic tasks while remaining competitive in bio-medical tasks. Furthermore, we explore gradient and latent clustering based data selection techniques to improve coverage when using elastic weight consolidation and experience replay methods.