Recursive noun phrases (NPs) have interesting semantic properties. For example, “my favorite new movie” is not necessarily my favorite movie, whereas “my new favorite movie” is. This is common sense to humans, yet it is unknown whether language models have such knowledge. We introduce the Recursive Noun Phrase Challenge (RNPC), a dataset of three textual inference tasks involving textual entailment and event plausibility comparison, precisely targeting the understanding of recursive NPs. When evaluated on RNPC, state-of-the-art Transformer models only perform around chance. Still, we show that such knowledge is learnable with appropriate data. We further probe the models for relevant linguistic features that can be learned from our tasks, including modifier semantic category and modifier scope. Finally, models trained on RNPC achieve strong zero-shot performance on an extrinsic Harm Detection evaluation task, showing the usefulness of the understanding of recursive NPs in downstream applications.
We introduce RESIN-11, a new schema-guided event extraction&prediction framework that can be applied to a large variety of newsworthy scenarios. The framework consists of two parts: (1) an open-domain end-to-end multimedia multilingual information extraction system with weak-supervision and zero-shot learningbased techniques. (2) schema matching and schema-guided event prediction based on our curated schema library. We build a demo website based on our dockerized system and schema library publicly available for installation (https://github.com/RESIN-KAIROS/RESIN-11). We also include a video demonstrating the system.
Procedures are inherently hierarchical. To “make videos”, one may need to “purchase a camera”, which in turn may require one to “set a budget”. While such hierarchical knowledge is critical for reasoning about complex procedures, most existing work has treated procedures as shallow structures without modeling the parent-child relation. In this work, we attempt to construct an open-domain hierarchical knowledge-base (KB) of procedures based on wikiHow, a website containing more than 110k instructional articles, each documenting the steps to carry out a complex procedure. To this end, we develop a simple and efficient method that links steps (e.g., “purchase a camera”) in an article to other articles with similar goals (e.g., “how to choose a camera”), recursively constructing the KB. Our method significantly outperforms several strong baselines according to automatic evaluation, human judgment, and application to downstream tasks such as instructional video retrieval.
The knowledge of scripts, common chains of events in stereotypical scenarios, is a valuable asset for task-oriented natural language understanding systems. We propose the Goal-Oriented Script Construction task, where a model produces a sequence of steps to accomplish a given goal. We pilot our task on the first multilingual script learning dataset supporting 18 languages collected from wikiHow, a website containing half a million how-to articles. For baselines, we consider both a generation-based approach using a language model and a retrieval-based approach by first retrieving the relevant steps from a large candidate pool and then ordering them. We show that our task is practical, feasible but challenging for state-of-the-art Transformer models, and that our methods can be readily deployed for various other datasets and domains with decent zero-shot performance.
Understanding what sequence of steps are needed to complete a goal can help artificial intelligence systems reason about human activities. Past work in NLP has examined the task of goal-step inference for text. We introduce the visual analogue. We propose the Visual Goal-Step Inference (VGSI) task, where a model is given a textual goal and must choose which of four images represents a plausible step towards that goal. With a new dataset harvested from wikiHow consisting of 772,277 images representing human actions, we show that our task is challenging for state-of-the-art multimodal models. Moreover, the multimodal representation learned from our data can be effectively transferred to other datasets like HowTo100m, increasing the VGSI accuracy by 15 - 20%. Our task will facilitate multimodal reasoning about procedural events.
Event extraction has long been a challenging task, addressed mostly with supervised methods that require expensive annotation and are not extensible to new event ontologies. In this work, we explore the possibility of zero-shot event extraction by formulating it as a set of Textual Entailment (TE) and/or Question Answering (QA) queries (e.g. “A city was attacked” entails “There is an attack”), exploiting pretrained TE/QA models for direct transfer. On ACE-2005 and ERE, our system achieves acceptable results, yet there is still a large gap from supervised approaches, showing that current QA and TE technologies fail in transferring to a different domain. To investigate the reasons behind the gap, we analyze the remaining key challenges, their respective impact, and possible improvement directions.
We present a new information extraction system that can automatically construct temporal event graphs from a collection of news documents from multiple sources, multiple languages (English and Spanish for our experiment), and multiple data modalities (speech, text, image and video). The system advances state-of-the-art from two aspects: (1) extending from sentence-level event extraction to cross-document cross-lingual cross-media event extraction, coreference resolution and temporal event tracking; (2) using human curated event schema library to match and enhance the extraction output. We have made the dockerlized system publicly available for research purpose at GitHub, with a demo video.
Modern task-oriented dialog systems need to reliably understand users’ intents. Intent detection is even more challenging when moving to new domains or new languages, since there is little annotated data. To address this challenge, we present a suite of pretrained intent detection models which can predict a broad range of intended goals from many actions because they are trained on wikiHow, a comprehensive instructional website. Our models achieve state-of-the-art results on the Snips dataset, the Schema-Guided Dialogue dataset, and all 3 languages of the Facebook multilingual dialog datasets. Our models also demonstrate strong zero- and few-shot performance, reaching over 75% accuracy using only 100 training examples in all datasets.
We propose a suite of reasoning tasks on two types of relations between procedural events: goal-step relations (“learn poses” is a step in the larger goal of “doing yoga”) and step-step temporal relations (“buy a yoga mat” typically precedes “learn poses”). We introduce a dataset targeting these two relations based on wikiHow, a website of instructional how-to articles. Our human-validated test set serves as a reliable benchmark for common-sense inference, with a gap of about 10% to 20% between the performance of state-of-the-art transformer models and human performance. Our automatically-generated training set allows models to effectively transfer to out-of-domain tasks requiring knowledge of procedural events, with greatly improved performances on SWAG, Snips, and Story Cloze Test in zero- and few-shot settings.