Qiji Zhou


2020

pdf
AMR Parsing with Latent Structural Information
Qiji Zhou | Yue Zhang | Donghong Ji | Hao Tang
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Abstract Meaning Representations (AMRs) capture sentence-level semantics structural representations to broad-coverage natural sentences. We investigate parsing AMR with explicit dependency structures and interpretable latent structures. We generate the latent soft structure without additional annotations, and fuse both dependency and latent structure via an extended graph neural networks. The fused structural information helps our experiments results to achieve the best reported results on both AMR 2.0 (77.5% Smatch F1 on LDC2017T10) and AMR 1.0 ((71.8% Smatch F1 on LDC2014T12).

pdf
Dependency Graph Enhanced Dual-transformer Structure for Aspect-based Sentiment Classification
Hao Tang | Donghong Ji | Chenliang Li | Qiji Zhou
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Aspect-based sentiment classification is a popular task aimed at identifying the corresponding emotion of a specific aspect. One sentence may contain various sentiments for different aspects. Many sophisticated methods such as attention mechanism and Convolutional Neural Networks (CNN) have been widely employed for handling this challenge. Recently, semantic dependency tree implemented by Graph Convolutional Networks (GCN) is introduced to describe the inner connection between aspects and the associated emotion words. But the improvement is limited due to the noise and instability of dependency trees. To this end, we propose a dependency graph enhanced dual-transformer network (named DGEDT) by jointly considering the flat representations learnt from Transformer and graph-based representations learnt from the corresponding dependency graph in an iterative interaction manner. Specifically, a dual-transformer structure is devised in DGEDT to support mutual reinforcement between the flat representation learning and graph-based representation learning. The idea is to allow the dependency graph to guide the representation learning of the transformer encoder and vice versa. The results on five datasets demonstrate that the proposed DGEDT outperforms all state-of-the-art alternatives with a large margin.