Prithviraj Ammanabrolu


Aligning to Social Norms and Values in Interactive Narratives
Prithviraj Ammanabrolu | Liwei Jiang | Maarten Sap | Hannaneh Hajishirzi | Yejin Choi
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

We focus on creating agents that act in alignment with socially beneficial norms and values in interactive narratives or text-based games—environments wherein an agent perceives and interacts with a world through natural language. Such interactive agents are often trained via reinforcement learning to optimize task performance, even when such rewards may lead to agent behaviors that violate societal norms—causing harm either to the agent itself or other entities in the environment. Social value alignment refers to creating agents whose behaviors conform to expected moral and social norms for a given context and group of people—in our case, it means agents that behave in a manner that is less harmful and more beneficial for themselves and others.We build on the Jiminy Cricket benchmark (Hendrycks et al. 2021), a set of 25 annotated interactive narratives containing thousands of morally salient scenarios covering everything from theft and bodily harm to altruism. We introduce the GALAD (Game-value ALignment through Action Distillation) agent that uses the social commonsense knowledge present in specially trained language models to contextually restrict its action space to only those actions that are aligned with socially beneficial values. An experimental study shows that the GALAD agent makes decisions efficiently enough to improve state-of-the-art task performance by 4% while reducing the frequency of socially harmful behaviors by 25% compared to strong contemporary value alignment approaches.

pdf bib
Proceedings of the 3rd Wordplay: When Language Meets Games Workshop (Wordplay 2022)
Marc-Alexandre Côté | Xingdi Yuan | Prithviraj Ammanabrolu
Proceedings of the 3rd Wordplay: When Language Meets Games Workshop (Wordplay 2022)

Situated Dialogue Learning through Procedural Environment Generation
Prithviraj Ammanabrolu | Renee Jia | Mark Riedl
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

We teach goal-driven agents to interactively act and speak in situated environments by training on generated curriculums. Our agents operate in LIGHT (Urbanek et al. 2019)—a large-scale crowd-sourced fantasy text adventure game wherein an agent perceives and interacts with the world through textual natural language. Goals in this environment take the form of character-based quests, consisting of personas and motivations. We augment LIGHT by learning to procedurally generate additional novel textual worlds and quests to create a curriculum of steadily increasing difficulty for training agents to achieve such goals. In particular, we measure curriculum difficulty in terms of the rarity of the quest in the original training distribution—an easier environment is one that is more likely to have been found in the unaugmented dataset. An ablation study shows that this method of learning from the tail of a distribution results in significantly higher generalization abilities as measured by zero-shot performance on never-before-seen quests.

ScienceWorld: Is your Agent Smarter than a 5th Grader?
Ruoyao Wang | Peter Jansen | Marc-Alexandre Côté | Prithviraj Ammanabrolu
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

We present ScienceWorld, a benchmark to test agents’ scientific reasoning abilities in a new interactive text environment at the level of a standard elementary school science curriculum. Despite the transformer-based progress seen in question-answering and scientific text processing, we find that current models cannot reason about or explain learned science concepts in novel contexts. For instance, models can easily answer what the conductivity of a known material is but struggle when asked how they would conduct an experiment in a grounded environment to find the conductivity of an unknown material. This begs the question of whether current models are simply retrieving answers by way of seeing a large number of similar examples or if they have learned to reason about concepts in a reusable manner. We hypothesize that agents need to be grounded in interactive environments to achieve such reasoning capabilities. Our experiments provide empirical evidence supporting this hypothesis – showing that a 1.5 million parameter agent trained interactively for 100k steps outperforms a 11 billion parameter model statically trained for scientific question-answering and reasoning from millions of expert demonstrations.


Telling Stories through Multi-User Dialogue by Modeling Character Relations
Wai Man Si | Prithviraj Ammanabrolu | Mark Riedl
Proceedings of the 22nd Annual Meeting of the Special Interest Group on Discourse and Dialogue

This paper explores character-driven story continuation, in which the story emerges through characters’ first- and second-person narration as well as dialogue—requiring models to select language that is consistent with a character’s persona and their relationships with other characters while following and advancing the story. We hypothesize that a multi-task model that trains on character dialogue plus character relationship information improves transformer-based story continuation. To this end, we extend the Critical Role Dungeons and Dragons Dataset (Rameshkumar and Bailey, 2020)—consisting of dialogue transcripts of people collaboratively telling a story while playing the role-playing game Dungeons and Dragons—with automatically extracted relationships between each pair of interacting characters as well as their personas. A series of ablations lend evidence to our hypothesis, showing that our multi-task model using character relationships improves story continuation accuracy over strong baselines.

How to Motivate Your Dragon: Teaching Goal-Driven Agents to Speak and Act in Fantasy Worlds
Prithviraj Ammanabrolu | Jack Urbanek | Margaret Li | Arthur Szlam | Tim Rocktäschel | Jason Weston
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

We seek to create agents that both act and communicate with other agents in pursuit of a goal. Towards this end, we extend LIGHT (Urbanek et al. 2019)—a large-scale crowd-sourced fantasy text-game—with a dataset of quests. These contain natural language motivations paired with in-game goals and human demonstrations; completing a quest might require dialogue or actions (or both). We introduce a reinforcement learning system that (1) incorporates large-scale language modeling-based and commonsense reasoning-based pre-training to imbue the agent with relevant priors; and (2) leverages a factorized action space of action commands and dialogue, balancing between the two. We conduct zero-shot evaluations using held-out human expert demonstrations, showing that our agents are able to act consistently and talk naturally with respect to their motivations.


Playing Text-Adventure Games with Graph-Based Deep Reinforcement Learning
Prithviraj Ammanabrolu | Mark Riedl
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Text-based adventure games provide a platform on which to explore reinforcement learning in the context of a combinatorial action space, such as natural language. We present a deep reinforcement learning architecture that represents the game state as a knowledge graph which is learned during exploration. This graph is used to prune the action space, enabling more efficient exploration. The question of which action to take can be reduced to a question-answering task, a form of transfer learning that pre-trains certain parts of our architecture. In experiments using the TextWorld framework, we show that our proposed technique can learn a control policy faster than baseline alternatives. We have also open-sourced our code at

pdf bib
Toward Automated Quest Generation in Text-Adventure Games
Prithviraj Ammanabrolu | William Broniec | Alex Mueller | Jeremy Paul | Mark Riedl
Proceedings of the 4th Workshop on Computational Creativity in Language Generation

Guided Neural Language Generation for Automated Storytelling
Prithviraj Ammanabrolu | Ethan Tien | Wesley Cheung | Zhaochen Luo | William Ma | Lara Martin | Mark Riedl
Proceedings of the Second Workshop on Storytelling

Neural network based approaches to automated story plot generation attempt to learn how to generate novel plots from a corpus of natural language plot summaries. Prior work has shown that a semantic abstraction of sentences called events improves neural plot generation and and allows one to decompose the problem into: (1) the generation of a sequence of events (event-to-event) and (2) the transformation of these events into natural language sentences (event-to-sentence). However, typical neural language generation approaches to event-to-sentence can ignore the event details and produce grammatically-correct but semantically-unrelated sentences. We present an ensemble-based model that generates natural language guided by events. Our method outperforms the baseline sequence-to-sequence model. Additionally, we provide results for a full end-to-end automated story generation system, demonstrating how our model works with existing systems designed for the event-to-event problem.

pdf bib
Transfer in Deep Reinforcement Learning Using Knowledge Graphs
Prithviraj Ammanabrolu | Mark Riedl
Proceedings of the Thirteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-13)

Text adventure games, in which players must make sense of the world through text descriptions and declare actions through text descriptions, provide a stepping stone toward grounding action in language. Prior work has demonstrated that using a knowledge graph as a state representation and question-answering to pre-train a deep Q-network facilitates faster control policy learning. In this paper, we explore the use of knowledge graphs as a representation for domain knowledge transfer for training text-adventure playing reinforcement learning agents. Our methods are tested across multiple computer generated and human authored games, varying in domain and complexity, and demonstrate that our transfer learning methods let us learn a higher-quality control policy faster.