Pontus Stenetorp


2022

pdf
Models in the Loop: Aiding Crowdworkers with Generative Annotation Assistants
Max Bartolo | Tristan Thrush | Sebastian Riedel | Pontus Stenetorp | Robin Jia | Douwe Kiela
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

In Dynamic Adversarial Data Collection (DADC), human annotators are tasked with finding examples that models struggle to predict correctly. Models trained on DADC-collected training data have been shown to be more robust in adversarial and out-of-domain settings, and are considerably harder for humans to fool. However, DADC is more time-consuming than traditional data collection and thus more costly per annotated example. In this work, we examine whether we can maintain the advantages of DADC, without incurring the additional cost. To that end, we introduce Generative Annotation Assistants (GAAs), generator-in-the-loop models that provide real-time suggestions that annotators can either approve, modify, or reject entirely. We collect training datasets in twenty experimental settings and perform a detailed analysis of this approach for the task of extractive question answering (QA) for both standard and adversarial data collection. We demonstrate that GAAs provide significant efficiency benefits with over a 30% annotation speed-up, while leading to over a 5x improvement in model fooling rates. In addition, we find that using GAA-assisted training data leads to higher downstream model performance on a variety of question answering tasks over adversarial data collection.

pdf
Generating Data to Mitigate Spurious Correlations in Natural Language Inference Datasets
Yuxiang Wu | Matt Gardner | Pontus Stenetorp | Pradeep Dasigi
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Natural language processing models often exploit spurious correlations between task-independent features and labels in datasets to perform well only within the distributions they are trained on, while not generalising to different task distributions. We propose to tackle this problem by generating a debiased version of a dataset, which can then be used to train a debiased, off-the-shelf model, by simply replacing its training data. Our approach consists of 1) a method for training data generators to generate high-quality, label-consistent data samples; and 2) a filtering mechanism for removing data points that contribute to spurious correlations, measured in terms of z-statistics. We generate debiased versions of the SNLI and MNLI datasets, and we evaluate on a large suite of debiased, out-of-distribution, and adversarial test sets. Results show that models trained on our debiased datasets generalise better than those trained on the original datasets in all settings. On the majority of the datasets, our method outperforms or performs comparably to previous state-of-the-art debiasing strategies, and when combined with an orthogonal technique, product-of-experts, it improves further and outperforms previous best results of SNLI-hard and MNLI-hard.

pdf
Fantastically Ordered Prompts and Where to Find Them: Overcoming Few-Shot Prompt Order Sensitivity
Yao Lu | Max Bartolo | Alastair Moore | Sebastian Riedel | Pontus Stenetorp
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

When primed with only a handful of training samples, very large, pretrained language models such as GPT-3 have shown competitive results when compared to fully-supervised, fine-tuned, large, pretrained language models. We demonstrate that the order in which the samples are provided can make the difference between near state-of-the-art and random guess performance: essentially some permutations are “fantastic” and some not. We analyse this phenomenon in detail, establishing that: it is present across model sizes (even for the largest current models), it is not related to a specific subset of samples, and that a given good permutation for one model is not transferable to another. While one could use a development set to determine which permutations are performant, this would deviate from the true few-shot setting as it requires additional annotated data. Instead, we use the generative nature of language models to construct an artificial development set and based on entropy statistics of the candidate permutations on this set, we identify performant prompts. Our method yields a 13% relative improvement for GPT-family models across eleven different established text classification tasks.

pdf
Challenges in Generalization in Open Domain Question Answering
Linqing Liu | Patrick Lewis | Sebastian Riedel | Pontus Stenetorp
Findings of the Association for Computational Linguistics: NAACL 2022

Recent work on Open Domain Question Answering has shown that there is a large discrepancy in model performance between novel test questions and those that largely overlap with training questions. However, it is unclear which aspects of novel questions make them challenging. Drawing upon studies on systematic generalization, we introduce and annotate questions according to three categories that measure different levels and kinds of generalization: training set overlap, compositional generalization (comp-gen), and novel-entity generalization (novel-entity). When evaluating six popular parametric and non-parametric models, we find that for the established Natural Questions and TriviaQA datasets, even the strongest model performance for comp-gen/novel-entity is 13.1/5.4% and 9.6/1.5% lower compared to that for the full test set – indicating the challenge posed by these types of questions. Furthermore, we show that whilst non-parametric models can handle questions containing novel entities relatively well, they struggle with those requiring compositional generalization. Lastly, we find that key question difficulty factors are: cascading errors from the retrieval component, frequency of question pattern, and frequency of the entity.

pdf
An Efficient Memory-Augmented Transformer for Knowledge-Intensive NLP Tasks
Yuxiang Wu | Yu Zhao | Baotian Hu | Pasquale Minervini | Pontus Stenetorp | Sebastian Riedel
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Access to external knowledge is essential for many natural language processing tasks, such as question answering and dialogue. Existing methods often rely on a parametric model that stores knowledge in its parameters, or use a retrieval-augmented model that has access to an external knowledge source. Parametric and retrieval-augmented models have complementary strengths in terms of computational efficiency and predictive accuracy. To combine the strength of both approaches, we propose the Efficient Memory-Augmented Transformer (EMAT) – it encodes external knowledge into a key-value memory and exploits the fast maximum inner product search for memory querying. We also introduce pre-training tasks that allow EMAT to encode informative key-value representations, and to learn an implicit strategy to integrate multiple memory slots into the transformer. Experiments on various knowledge-intensive tasks such as question answering and dialogue datasets show that, simply augmenting parametric models (T5-base) using our method produces more accurate results (e.g., 25.8 → 44.3 EM on NQ) while retaining a high throughput (e.g., 1000 queries/s on NQ). Compared to retrieval-augmented models, EMAT runs substantially faster across the board and produces more accurate results on WoW and ELI5.

pdf bib
Proceedings of the First Workshop on Dynamic Adversarial Data Collection
Max Bartolo | Hannah Kirk | Pedro Rodriguez | Katerina Margatina | Tristan Thrush | Robin Jia | Pontus Stenetorp | Adina Williams | Douwe Kiela
Proceedings of the First Workshop on Dynamic Adversarial Data Collection

pdf
MedDistant19: Towards an Accurate Benchmark for Broad-Coverage Biomedical Relation Extraction
Saadullah Amin | Pasquale Minervini | David Chang | Pontus Stenetorp | Guenter Neumann
Proceedings of the 29th International Conference on Computational Linguistics

Relation extraction in the biomedical domain is challenging due to the lack of labeled data and high annotation costs, needing domain experts. Distant supervision is commonly used to tackle the scarcity of annotated data by automatically pairing knowledge graph relationships with raw texts. Such a pipeline is prone to noise and has added challenges to scale for covering a large number of biomedical concepts. We investigated existing broad-coverage distantly supervised biomedical relation extraction benchmarks and found a significant overlap between training and test relationships ranging from 26% to 86%. Furthermore, we noticed several inconsistencies in the data construction process of these benchmarks, and where there is no train-test leakage, the focus is on interactions between narrower entity types. This work presents a more accurate benchmark MedDistant19 for broad-coverage distantly supervised biomedical relation extraction that addresses these shortcomings and is obtained by aligning the MEDLINE abstracts with the widely used SNOMED Clinical Terms knowledge base. Lacking thorough evaluation with domain-specific language models, we also conduct experiments validating general domain relation extraction findings to biomedical relation extraction.

2021

pdf
Contrasting Human- and Machine-Generated Word-Level Adversarial Examples for Text Classification
Maximilian Mozes | Max Bartolo | Pontus Stenetorp | Bennett Kleinberg | Lewis Griffin
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Research shows that natural language processing models are generally considered to be vulnerable to adversarial attacks; but recent work has drawn attention to the issue of validating these adversarial inputs against certain criteria (e.g., the preservation of semantics and grammaticality). Enforcing constraints to uphold such criteria may render attacks unsuccessful, raising the question of whether valid attacks are actually feasible. In this work, we investigate this through the lens of human language ability. We report on crowdsourcing studies in which we task humans with iteratively modifying words in an input text, while receiving immediate model feedback, with the aim of causing a sentiment classification model to misclassify the example. Our findings suggest that humans are capable of generating a substantial amount of adversarial examples using semantics-preserving word substitutions. We analyze how human-generated adversarial examples compare to the recently proposed TextFooler, Genetic, BAE and SememePSO attack algorithms on the dimensions naturalness, preservation of sentiment, grammaticality and substitution rate. Our findings suggest that human-generated adversarial examples are not more able than the best algorithms to generate natural-reading, sentiment-preserving examples, though they do so by being much more computationally efficient.

pdf
Improving Question Answering Model Robustness with Synthetic Adversarial Data Generation
Max Bartolo | Tristan Thrush | Robin Jia | Sebastian Riedel | Pontus Stenetorp | Douwe Kiela
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Despite recent progress, state-of-the-art question answering models remain vulnerable to a variety of adversarial attacks. While dynamic adversarial data collection, in which a human annotator tries to write examples that fool a model-in-the-loop, can improve model robustness, this process is expensive which limits the scale of the collected data. In this work, we are the first to use synthetic adversarial data generation to make question answering models more robust to human adversaries. We develop a data generation pipeline that selects source passages, identifies candidate answers, generates questions, then finally filters or re-labels them to improve quality. Using this approach, we amplify a smaller human-written adversarial dataset to a much larger set of synthetic question-answer pairs. By incorporating our synthetic data, we improve the state-of-the-art on the AdversarialQA dataset by 3.7F1 and improve model generalisation on nine of the twelve MRQA datasets. We further conduct a novel human-in-the-loop evaluation and show that our models are considerably more robust to new human-written adversarial examples: crowdworkers can fool our model only 8.8% of the time on average, compared to 17.6% for a model trained without synthetic data.

pdf
PAQ: 65 Million Probably-Asked Questions and What You Can Do With Them
Patrick Lewis | Yuxiang Wu | Linqing Liu | Pasquale Minervini | Heinrich Küttler | Aleksandra Piktus | Pontus Stenetorp | Sebastian Riedel
Transactions of the Association for Computational Linguistics, Volume 9

Abstract Open-domain Question Answering models that directly leverage question-answer (QA) pairs, such as closed-book QA (CBQA) models and QA-pair retrievers, show promise in terms of speed and memory compared with conventional models which retrieve and read from text corpora. QA-pair retrievers also offer interpretable answers, a high degree of control, and are trivial to update at test time with new knowledge. However, these models fall short of the accuracy of retrieve-and-read systems, as substantially less knowledge is covered by the available QA-pairs relative to text corpora like Wikipedia. To facilitate improved QA-pair models, we introduce Probably Asked Questions (PAQ), a very large resource of 65M automatically generated QA-pairs. We introduce a new QA-pair retriever, RePAQ, to complement PAQ. We find that PAQ preempts and caches test questions, enabling RePAQ to match the accuracy of recent retrieve-and-read models, whilst being significantly faster. Using PAQ, we train CBQA models which outperform comparable baselines by 5%, but trail RePAQ by over 15%, indicating the effectiveness of explicit retrieval. RePAQ can be configured for size (under 500MB) or speed (over 1K questions per second) while retaining high accuracy. Lastly, we demonstrate RePAQ’s strength at selective QA, abstaining from answering when it is likely to be incorrect. This enables RePAQ to “back-off” to a more expensive state-of-the-art model, leading to a combined system which is both more accurate and 2x faster than the state-of-the-art model alone.

pdf
Frequency-Guided Word Substitutions for Detecting Textual Adversarial Examples
Maximilian Mozes | Pontus Stenetorp | Bennett Kleinberg | Lewis Griffin
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

Recent efforts have shown that neural text processing models are vulnerable to adversarial examples, but the nature of these examples is poorly understood. In this work, we show that adversarial attacks against CNN, LSTM and Transformer-based classification models perform word substitutions that are identifiable through frequency differences between replaced words and their corresponding substitutions. Based on these findings, we propose frequency-guided word substitutions (FGWS), a simple algorithm exploiting the frequency properties of adversarial word substitutions for the detection of adversarial examples. FGWS achieves strong performance by accurately detecting adversarial examples on the SST-2 and IMDb sentiment datasets, with F1 detection scores of up to 91.4% against RoBERTa-based classification models. We compare our approach against a recently proposed perturbation discrimination framework and show that we outperform it by up to 13.0% F1.

pdf
Question and Answer Test-Train Overlap in Open-Domain Question Answering Datasets
Patrick Lewis | Pontus Stenetorp | Sebastian Riedel
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

Ideally Open-Domain Question Answering models should exhibit a number of competencies, ranging from simply memorizing questions seen at training time, to answering novel question formulations with answers seen during training, to generalizing to completely novel questions with novel answers. However, single aggregated test set scores do not show the full picture of what capabilities models truly have. In this work, we perform a detailed study of the test sets of three popular open-domain benchmark datasets with respect to these competencies. We find that 30% of test-set questions have a near-duplicate paraphrase in their corresponding train sets. In addition, we find that 60-70% of answers in the test sets are also present in the train sets. Using these findings, we evaluate a variety of popular open-domain models to obtain greater insight into what extent they can generalize, and what drives their overall performance. We find that all models perform substantially worse on questions that cannot be memorized from train sets, with a mean absolute performance difference of 61% between repeated and non-repeated data. Finally we show that simple nearest-neighbor models outperform a BART closed-book QA model, further highlighting the role that train set memorization plays in these benchmarks

pdf
Benchmarking Machine Reading Comprehension: A Psychological Perspective
Saku Sugawara | Pontus Stenetorp | Akiko Aizawa
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

Machine reading comprehension (MRC) has received considerable attention as a benchmark for natural language understanding. However, the conventional task design of MRC lacks explainability beyond the model interpretation, i.e., reading comprehension by a model cannot be explained in human terms. To this end, this position paper provides a theoretical basis for the design of MRC datasets based on psychology as well as psychometrics, and summarizes it in terms of the prerequisites for benchmarking MRC. We conclude that future datasets should (i) evaluate the capability of the model for constructing a coherent and grounded representation to understand context-dependent situations and (ii) ensure substantive validity by shortcut-proof questions and explanation as a part of the task design.

pdf
Controllable Abstractive Dialogue Summarization with Sketch Supervision
Chien-Sheng Wu | Linqing Liu | Wenhao Liu | Pontus Stenetorp | Caiming Xiong
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf
Training Adaptive Computation for Open-Domain Question Answering with Computational Constraints
Yuxiang Wu | Pasquale Minervini | Pontus Stenetorp | Sebastian Riedel
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

Adaptive Computation (AC) has been shown to be effective in improving the efficiency of Open-Domain Question Answering (ODQA) systems. However, the current AC approaches require tuning of all model parameters, and training state-of-the-art ODQA models requires significant computational resources that may not be available for most researchers. We propose Adaptive Passage Encoder, an AC method that can be applied to an existing ODQA model and can be trained efficiently on a single GPU. It keeps the parameters of the base ODQA model fixed, but it overrides the default layer-by-layer computation of the encoder with an AC policy that is trained to optimise the computational efficiency of the model. Our experimental results show that our method improves upon a state-of-the-art model on two datasets, and is also more accurate than previous AC methods due to the stronger base ODQA model. All source code and datasets are available at https://github.com/uclnlp/APE.

pdf
Dynabench: Rethinking Benchmarking in NLP
Douwe Kiela | Max Bartolo | Yixin Nie | Divyansh Kaushik | Atticus Geiger | Zhengxuan Wu | Bertie Vidgen | Grusha Prasad | Amanpreet Singh | Pratik Ringshia | Zhiyi Ma | Tristan Thrush | Sebastian Riedel | Zeerak Waseem | Pontus Stenetorp | Robin Jia | Mohit Bansal | Christopher Potts | Adina Williams
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

We introduce Dynabench, an open-source platform for dynamic dataset creation and model benchmarking. Dynabench runs in a web browser and supports human-and-model-in-the-loop dataset creation: annotators seek to create examples that a target model will misclassify, but that another person will not. In this paper, we argue that Dynabench addresses a critical need in our community: contemporary models quickly achieve outstanding performance on benchmark tasks but nonetheless fail on simple challenge examples and falter in real-world scenarios. With Dynabench, dataset creation, model development, and model assessment can directly inform each other, leading to more robust and informative benchmarks. We report on four initial NLP tasks, illustrating these concepts and highlighting the promise of the platform, and address potential objections to dynamic benchmarking as a new standard for the field.

2020

pdf
Undersensitivity in Neural Reading Comprehension
Johannes Welbl | Pasquale Minervini | Max Bartolo | Pontus Stenetorp | Sebastian Riedel
Findings of the Association for Computational Linguistics: EMNLP 2020

Current reading comprehension methods generalise well to in-distribution test sets, yet perform poorly on adversarially selected data. Prior work on adversarial inputs typically studies model oversensitivity: semantically invariant text perturbations that cause a model’s prediction to change. Here we focus on the complementary problem: excessive prediction undersensitivity, where input text is meaningfully changed but the model’s prediction does not, even though it should. We formulate an adversarial attack which searches among semantic variations of the question for which a model erroneously predicts the same answer, and with even higher probability. We demonstrate that models trained on both SQuAD2.0 and NewsQA are vulnerable to this attack, and then investigate data augmentation and adversarial training as defences. Both substantially decrease adversarial vulnerability, which generalises to held-out data and held-out attack spaces. Addressing undersensitivity furthermore improves model robustness on the previously introduced ADDSENT and ADDONESENT datasets, and models generalise better when facing train / evaluation distribution mismatch: they are less prone to overly rely on shallow predictive cues present only in the training set, and outperform a conventional model by as much as 10.9% F1.

pdf
Beat the AI: Investigating Adversarial Human Annotation for Reading Comprehension
Max Bartolo | Alastair Roberts | Johannes Welbl | Sebastian Riedel | Pontus Stenetorp
Transactions of the Association for Computational Linguistics, Volume 8

Innovations in annotation methodology have been a catalyst for Reading Comprehension (RC) datasets and models. One recent trend to challenge current RC models is to involve a model in the annotation process: Humans create questions adversarially, such that the model fails to answer them correctly. In this work we investigate this annotation methodology and apply it in three different settings, collecting a total of 36,000 samples with progressively stronger models in the annotation loop. This allows us to explore questions such as the reproducibility of the adversarial effect, transfer from data collected with varying model-in-the-loop strengths, and generalization to data collected without a model. We find that training on adversarially collected samples leads to strong generalization to non-adversarially collected datasets, yet with progressive performance deterioration with increasingly stronger models-in-the-loop. Furthermore, we find that stronger models can still learn from datasets collected with substantially weaker models-in-the-loop. When trained on data collected with a BiDAF model in the loop, RoBERTa achieves 39.9F1 on questions that it cannot answer when trained on SQuAD—only marginally lower than when trained on data collected using RoBERTa itself (41.0F1).

pdf
Don’t Read Too Much Into It: Adaptive Computation for Open-Domain Question Answering
Yuxiang Wu | Pasquale Minervini | Pontus Stenetorp | Sebastian Riedel
Proceedings of SustaiNLP: Workshop on Simple and Efficient Natural Language Processing

Most approaches to Open-Domain Question Answering consist of a light-weight retriever that selects a set of candidate passages, and a computationally expensive reader that examines the passages to identify the correct answer. Previous works have shown that as the number of retrieved passages increases, so does the performance of the reader. However, they assume all retrieved passages are of equal importance and allocate the same amount of computation to them, leading to a substantial increase in computational cost. To reduce this cost, we propose the use of adaptive computation to control the computational budget allocated for the passages to be read. We first introduce a technique operating on individual passages in isolation which relies on anytime prediction and a per-layer estimation of an early exit probability. We then introduce SKYLINEBUILDER, an approach for dynamically deciding on which passage to allocate computation at each step, based on a resource allocation policy trained via reinforcement learning. Our results on SQuAD-Open show that adaptive computation with global prioritisation improves over several strong static and adaptive methods, leading to a 4.3x reduction in computation while retaining 95% performance of the full model.

pdf
R4C: A Benchmark for Evaluating RC Systems to Get the Right Answer for the Right Reason
Naoya Inoue | Pontus Stenetorp | Kentaro Inui
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Recent studies have revealed that reading comprehension (RC) systems learn to exploit annotation artifacts and other biases in current datasets. This prevents the community from reliably measuring the progress of RC systems. To address this issue, we introduce R4C, a new task for evaluating RC systems’ internal reasoning. R4C requires giving not only answers but also derivations: explanations that justify predicted answers. We present a reliable, crowdsourced framework for scalably annotating RC datasets with derivations. We create and publicly release the R4C dataset, the first, quality-assured dataset consisting of 4.6k questions, each of which is annotated with 3 reference derivations (i.e. 13.8k derivations). Experiments show that our automatic evaluation metrics using multiple reference derivations are reliable, and that R4C assesses different skills from an existing benchmark.

pdf
Don’t Read Too Much Into It: Adaptive Computation for Open-Domain Question Answering
Yuxiang Wu | Sebastian Riedel | Pasquale Minervini | Pontus Stenetorp
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Most approaches to Open-Domain Question Answering consist of a light-weight retriever that selects a set of candidate passages, and a computationally expensive reader that examines the passages to identify the correct answer. Previous works have shown that as the number of retrieved passages increases, so does the performance of the reader. However, they assume all retrieved passages are of equal importance and allocate the same amount of computation to them, leading to a substantial increase in computational cost. To reduce this cost, we propose the use of adaptive computation to control the computational budget allocated for the passages to be read. We first introduce a technique operating on individual passages in isolation which relies on anytime prediction and a per-layer estimation of early exit probability. We then introduce SKYLINEBUILDER, an approach for dynamically deciding on which passage to allocate computation at each step, based on a resource allocation policy trained via reinforcement learning. Our results on SQuAD-Open show that adaptive computation with global prioritisation improves over several strong static and adaptive methods, leading to a 4.3x reduction in computation while retaining 95% performance of the full model.

pdf
AxCell: Automatic Extraction of Results from Machine Learning Papers
Marcin Kardas | Piotr Czapla | Pontus Stenetorp | Sebastian Ruder | Sebastian Riedel | Ross Taylor | Robert Stojnic
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Tracking progress in machine learning has become increasingly difficult with the recent explosion in the number of papers. In this paper, we present AxCell, an automatic machine learning pipeline for extracting results from papers. AxCell uses several novel components, including a table segmentation subtask, to learn relevant structural knowledge that aids extraction. When compared with existing methods, our approach significantly improves the state of the art for results extraction. We also release a structured, annotated dataset for training models for results extraction, and a dataset for evaluating the performance of models on this task. Lastly, we show the viability of our approach enables it to be used for semi-automated results extraction in production, suggesting our improvements make this task practically viable for the first time. Code is available on GitHub.

2018

pdf
Constructing Datasets for Multi-hop Reading Comprehension Across Documents
Johannes Welbl | Pontus Stenetorp | Sebastian Riedel
Transactions of the Association for Computational Linguistics, Volume 6

Most Reading Comprehension methods limit themselves to queries which can be answered using a single sentence, paragraph, or document. Enabling models to combine disjoint pieces of textual evidence would extend the scope of machine comprehension methods, but currently no resources exist to train and test this capability. We propose a novel task to encourage the development of models for text understanding across multiple documents and to investigate the limits of existing methods. In our task, a model learns to seek and combine evidence — effectively performing multihop, alias multi-step, inference. We devise a methodology to produce datasets for this task, given a collection of query-answer pairs and thematically linked documents. Two datasets from different domains are induced, and we identify potential pitfalls and devise circumvention strategies. We evaluate two previously proposed competitive models and find that one can integrate information across documents. However, both models struggle to select relevant information; and providing documents guaranteed to be relevant greatly improves their performance. While the models outperform several strong baselines, their best accuracy reaches 54.5% on an annotated test set, compared to human performance at 85.0%, leaving ample room for improvement.

pdf
Wronging a Right: Generating Better Errors to Improve Grammatical Error Detection
Sudhanshu Kasewa | Pontus Stenetorp | Sebastian Riedel
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Grammatical error correction, like other machine learning tasks, greatly benefits from large quantities of high quality training data, which is typically expensive to produce. While writing a program to automatically generate realistic grammatical errors would be difficult, one could learn the distribution of naturally-occurring errors and attempt to introduce them into other datasets. Initial work on inducing errors in this way using statistical machine translation has shown promise; we investigate cheaply constructing synthetic samples, given a small corpus of human-annotated data, using an off-the-rack attentive sequence-to-sequence model and a straight-forward post-processing procedure. Our approach yields error-filled artificial data that helps a vanilla bi-directional LSTM to outperform the previous state of the art at grammatical error detection, and a previously introduced model to gain further improvements of over 5% F0.5 score. When attempting to determine if a given sentence is synthetic, a human annotator at best achieves 39.39 F1 score, indicating that our model generates mostly human-like instances.

pdf
Extrapolation in NLP
Jeff Mitchell | Pontus Stenetorp | Pasquale Minervini | Sebastian Riedel
Proceedings of the Workshop on Generalization in the Age of Deep Learning

We argue that extrapolation to unseen data will often be easier for models that capture global structures, rather than just maximise their local fit to the training data. We show that this is true for two popular models: the Decomposable Attention Model and word2vec.

pdf
UCL Machine Reading Group: Four Factor Framework For Fact Finding (HexaF)
Takuma Yoneda | Jeff Mitchell | Johannes Welbl | Pontus Stenetorp | Sebastian Riedel
Proceedings of the First Workshop on Fact Extraction and VERification (FEVER)

In this paper we describe our 2nd place FEVER shared-task system that achieved a FEVER score of 62.52% on the provisional test set (without additional human evaluation), and 65.41% on the development set. Our system is a four stage model consisting of document retrieval, sentence retrieval, natural language inference and aggregation. Retrieval is performed leveraging task-specific features, and then a natural language inference model takes each of the retrieved sentences paired with the claimed fact. The resulting predictions are aggregated across retrieved sentences with a Multi-Layer Perceptron, and re-ranked corresponding to the final prediction.

pdf
Jack the Reader – A Machine Reading Framework
Dirk Weissenborn | Pasquale Minervini | Isabelle Augenstein | Johannes Welbl | Tim Rocktäschel | Matko Bošnjak | Jeff Mitchell | Thomas Demeester | Tim Dettmers | Pontus Stenetorp | Sebastian Riedel
Proceedings of ACL 2018, System Demonstrations

Many Machine Reading and Natural Language Understanding tasks require reading supporting text in order to answer questions. For example, in Question Answering, the supporting text can be newswire or Wikipedia articles; in Natural Language Inference, premises can be seen as the supporting text and hypotheses as questions. Providing a set of useful primitives operating in a single framework of related tasks would allow for expressive modelling, and easier model comparison and replication. To that end, we present Jack the Reader (JACK), a framework for Machine Reading that allows for quick model prototyping by component reuse, evaluation of new models on existing datasets as well as integrating new datasets and applying them on a growing set of implemented baseline models. JACK is currently supporting (but not limited to) three tasks: Question Answering, Natural Language Inference, and Link Prediction. It is developed with the aim of increasing research efficiency and code reuse.

2017

pdf
Neural Architectures for Fine-grained Entity Type Classification
Sonse Shimaoka | Pontus Stenetorp | Kentaro Inui | Sebastian Riedel
Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers

In this work, we investigate several neural network architectures for fine-grained entity type classification and make three key contributions. Despite being a natural comparison and addition, previous work on attentive neural architectures have not considered hand-crafted features and we combine these with learnt features and establish that they complement each other. Additionally, through quantitative analysis we establish that the attention mechanism learns to attend over syntactic heads and the phrase containing the mention, both of which are known to be strong hand-crafted features for our task. We introduce parameter sharing between labels through a hierarchical encoding method, that in low-dimensional projections show clear clusters for each type hierarchy. Lastly, despite using the same evaluation dataset, the literature frequently compare models trained using different data. We demonstrate that the choice of training data has a drastic impact on performance, which decreases by as much as 9.85% loose micro F1 score for a previously proposed method. Despite this discrepancy, our best model achieves state-of-the-art results with 75.36% loose micro F1 score on the well-established Figer (GOLD) dataset and we report the best results for models trained using publicly available data for the OntoNotes dataset with 64.93% loose micro F1 score.

2016

pdf
Learning to Generate Textual Data
Guillaume Bouchard | Pontus Stenetorp | Sebastian Riedel
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing

pdf
An Attentive Neural Architecture for Fine-grained Entity Type Classification
Sonse Shimaoka | Pontus Stenetorp | Kentaro Inui | Sebastian Riedel
Proceedings of the 5th Workshop on Automated Knowledge Base Construction

pdf
Defining Words with Words: Beyond the Distributional Hypothesis
Iuliana-Elena Parasca | Andreas Lukas Rauter | Jack Roper | Aleksandar Rusinov | Guillaume Bouchard | Sebastian Riedel | Pontus Stenetorp
Proceedings of the 1st Workshop on Evaluating Vector-Space Representations for NLP

2015

pdf
CroVeWA: Crosslingual Vector-Based Writing Assistance
Hubert Soyer | Goran Topić | Pontus Stenetorp | Akiko Aizawa
Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Demonstrations

pdf
Sharing annotations better: RESTful Open Annotation
Sampo Pyysalo | Jorge Campos | Juan Miguel Cejuela | Filip Ginter | Kai Hakala | Chen Li | Pontus Stenetorp | Lars Juhl Jensen
Proceedings of ACL-IJCNLP 2015 System Demonstrations

pdf
Task-Oriented Learning of Word Embeddings for Semantic Relation Classification
Kazuma Hashimoto | Pontus Stenetorp | Makoto Miwa | Yoshimasa Tsuruoka
Proceedings of the Nineteenth Conference on Computational Natural Language Learning

2014

pdf
Jointly Learning Word Representations and Composition Functions Using Predicate-Argument Structures
Kazuma Hashimoto | Pontus Stenetorp | Makoto Miwa | Yoshimasa Tsuruoka
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)

2013

pdf
BioNLP Shared Task 2013: Supporting Resources
Pontus Stenetorp | Wiktoria Golik | Thierry Hamon | Donald C. Comeau | Rezarta Islamaj Doğan | Haibin Liu | W. John Wilbur
Proceedings of the BioNLP Shared Task 2013 Workshop

2012

pdf
New Resources and Perspectives for Biomedical Event Extraction
Sampo Pyysalo | Pontus Stenetorp | Tomoko Ohta | Jin-Dong Kim | Sophia Ananiadou
BioNLP: Proceedings of the 2012 Workshop on Biomedical Natural Language Processing

pdf
Bridging the Gap Between Scope-based and Event-based Negation/Speculation Annotations: A Bridge Not Too Far
Pontus Stenetorp | Sampo Pyysalo | Tomoko Ohta | Sophia Ananiadou | Jun’ichi Tsujii
Proceedings of the Workshop on Extra-Propositional Aspects of Meaning in Computational Linguistics

pdf
brat: a Web-based Tool for NLP-Assisted Text Annotation
Pontus Stenetorp | Sampo Pyysalo | Goran Topić | Tomoko Ohta | Sophia Ananiadou | Jun’ichi Tsujii
Proceedings of the Demonstrations at the 13th Conference of the European Chapter of the Association for Computational Linguistics

2011

pdf
SimSem: Fast Approximate String Matching in Relation to Semantic Category Disambiguation
Pontus Stenetorp | Sampo Pyysalo | Jun’ichi Tsujii
Proceedings of BioNLP 2011 Workshop

pdf
BioNLP Shared Task 2011: Supporting Resources
Pontus Stenetorp | Goran Topić | Sampo Pyysalo | Tomoko Ohta | Jin-Dong Kim | Jun’ichi Tsujii
Proceedings of BioNLP Shared Task 2011 Workshop

2009

pdf
A Novel Word Segmentation Approach for Written Languages with Word Boundary Markers
Han-Cheol Cho | Do-Gil Lee | Jung-Tae Lee | Pontus Stenetorp | Jun’ichi Tsujii | Hae-Chang Rim
Proceedings of the ACL-IJCNLP 2009 Conference Short Papers

Search