Pengxiang Cheng


2018

pdf
Implicit Argument Prediction with Event Knowledge
Pengxiang Cheng | Katrin Erk
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

Implicit arguments are not syntactically connected to their predicates, and are therefore hard to extract. Previous work has used models with large numbers of features, evaluated on very small datasets. We propose to train models for implicit argument prediction on a simple cloze task, for which data can be generated automatically at scale. This allows us to use a neural model, which draws on narrative coherence and entity salience for predictions. We show that our model has superior performance on both synthetic and natural data.

2016

pdf
Representing Meaning with a Combination of Logical and Distributional Models
I. Beltagy | Stephen Roller | Pengxiang Cheng | Katrin Erk | Raymond J. Mooney
Computational Linguistics, Volume 42, Issue 4 - December 2016