Peiyi Wang


2022

pdf
An Enhanced Span-based Decomposition Method for Few-Shot Sequence Labeling
Peiyi Wang | Runxin Xu | Tianyu Liu | Qingyu Zhou | Yunbo Cao | Baobao Chang | Zhifang Sui
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Few-Shot Sequence Labeling (FSSL) is a canonical paradigm for the tagging models, e.g., named entity recognition and slot filling, to generalize on an emerging, resource-scarce domain. Recently, the metric-based meta-learning framework has been recognized as a promising approach for FSSL. However, most prior works assign a label to each token based on the token-level similarities, which ignores the integrality of named entities or slots. To this end, in this paper, we propose ESD, an Enhanced Span-based Decomposition method for FSSL. ESD formulates FSSL as a span-level matching problem between test query and supporting instances. Specifically, ESD decomposes the span matching problem into a series of span-level procedures, mainly including enhanced span representation, class prototype aggregation and span conflicts resolution. Extensive experiments show that ESD achieves the new state-of-the-art results on two popular FSSL benchmarks, FewNERD and SNIPS, and is proven to be more robust in the noisy and nested tagging scenarios.

pdf
A Two-Stream AMR-enhanced Model for Document-level Event Argument Extraction
Runxin Xu | Peiyi Wang | Tianyu Liu | Shuang Zeng | Baobao Chang | Zhifang Sui
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Most previous studies aim at extracting events from a single sentence, while document-level event extraction still remains under-explored. In this paper, we focus on extracting event arguments from an entire document, which mainly faces two critical problems: a) the long-distance dependency between trigger and arguments over sentences; b) the distracting context towards an event in the document. To address these issues, we propose a Two-Stream Abstract meaning Representation enhanced extraction model (TSAR). TSAR encodes the document from different perspectives by a two-stream encoding module, to utilize local and global information and lower the impact of distracting context. Besides, TSAR introduces an AMR-guided interaction module to capture both intra-sentential and inter-sentential features, based on the locally and globally constructed AMR semantic graphs. An auxiliary boundary loss is introduced to enhance the boundary information for text spans explicitly. Extensive experiments illustrate that TSAR outperforms previous state-of-the-art by a large margin, with 2.54 F1 and 5.13 F1 performance gain on the public RAMS and WikiEvents datasets respectively, showing the superiority in the cross-sentence arguments extraction. We release our code in https://github.com/ PKUnlp-icler/TSAR.

pdf
Incorporating Hierarchy into Text Encoder: a Contrastive Learning Approach for Hierarchical Text Classification
Zihan Wang | Peiyi Wang | Lianzhe Huang | Xin Sun | Houfeng Wang
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Hierarchical text classification is a challenging subtask of multi-label classification due to its complex label hierarchy. Existing methods encode text and label hierarchy separately and mix their representations for classification, where the hierarchy remains unchanged for all input text. Instead of modeling them separately, in this work, we propose Hierarchy-guided Contrastive Learning (HGCLR) to directly embed the hierarchy into a text encoder. During training, HGCLR constructs positive samples for input text under the guidance of the label hierarchy. By pulling together the input text and its positive sample, the text encoder can learn to generate the hierarchy-aware text representation independently. Therefore, after training, the HGCLR enhanced text encoder can dispense with the redundant hierarchy. Extensive experiments on three benchmark datasets verify the effectiveness of HGCLR.

pdf
Hierarchical Curriculum Learning for AMR Parsing
Peiyi Wang | Liang Chen | Tianyu Liu | Damai Dai | Yunbo Cao | Baobao Chang | Zhifang Sui
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Abstract Meaning Representation (AMR) parsing aims to translate sentences to semantic representation with a hierarchical structure, and is recently empowered by pretrained sequence-to-sequence models. However, there exists a gap between their flat training objective (i.e., equally treats all output tokens) and the hierarchical AMR structure, which limits the model generalization. To bridge this gap, we propose a Hierarchical Curriculum Learning (HCL) framework with Structure-level (SC) and Instance-level Curricula (IC). SC switches progressively from core to detail AMR semantic elements while IC transits from structure-simple to -complex AMR instances during training. Through these two warming-up processes, HCL reduces the difficulty of learning complex structures, thus the flat model can better adapt to the AMR hierarchy. Extensive experiments on AMR2.0, AMR3.0, structure-complex and out-of-distribution situations verify the effectiveness of HCL.

pdf
ATP: AMRize Then Parse! Enhancing AMR Parsing with PseudoAMRs
Liang Chen | Peiyi Wang | Runxin Xu | Tianyu Liu | Zhifang Sui | Baobao Chang
Findings of the Association for Computational Linguistics: NAACL 2022

As Abstract Meaning Representation (AMR) implicitly involves compound semantic annotations, we hypothesize auxiliary tasks which are semantically or formally related can better enhance AMR parsing. We find that 1) Semantic role labeling (SRL) and dependency parsing (DP), would bring more performance gain than other tasks e.g. MT and summarization in the text-to-AMR transition even with much less data. 2) To make a better fit for AMR, data from auxiliary tasks should be properly “AMRized” to PseudoAMR before training. Knowledge from shallow level parsing tasks can be better transferred to AMR Parsing with structure transform. 3) Intermediate-task learning is a better paradigm to introduce auxiliary tasks to AMR parsing, compared to multitask learning. From an empirical perspective, we propose a principled method to involve auxiliary tasks to boost AMR parsing. Extensive experiments show that our method achieves new state-of-the-art performance on different benchmarks especially in topology-related scores. Code and models are released at https://github.com/PKUnlp-icler/ATP.

pdf
HPT: Hierarchy-aware Prompt Tuning for Hierarchical Text Classification
Zihan Wang | Peiyi Wang | Tianyu Liu | Binghuai Lin | Yunbo Cao | Zhifang Sui | Houfeng Wang
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Hierarchical text classification (HTC) is a challenging subtask of multi-label classification due to its complex label hierarchy.Recently, the pretrained language models (PLM)have been widely adopted in HTC through a fine-tuning paradigm. However, in this paradigm, there exists a huge gap between the classification tasks with sophisticated label hierarchy and the masked language model (MLM) pretraining tasks of PLMs and thus the potential of PLMs cannot be fully tapped.To bridge the gap, in this paper, we propose HPT, a Hierarchy-aware Prompt Tuning method to handle HTC from a multi-label MLM perspective.Specifically, we construct a dynamic virtual template and label words that take the form of soft prompts to fuse the label hierarchy knowledge and introduce a zero-bounded multi-label cross-entropy loss to harmonize the objectives of HTC and MLM.Extensive experiments show HPT achieves state-of-the-art performances on 3 popular HTC datasets and is adept at handling the imbalance and low resource situations. Our code is available at https://github.com/wzh9969/HPT.

pdf
Learning Robust Representations for Continual Relation Extraction via Adversarial Class Augmentation
Peiyi Wang | Yifan Song | Tianyu Liu | Binghuai Lin | Yunbo Cao | Sujian Li | Zhifang Sui
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Continual relation extraction (CRE) aims to continually learn new relations from a class-incremental data stream. CRE model usually suffers from catastrophic forgetting problem, i.e., the performance of old relations seriously degrades when the model learns new relations. Most previous work attributes catastrophic forgetting to the corruption of the learned representations as new relations come, with an implicit assumption that the CRE models have adequately learned the old relations. In this paper, through empirical studies we argue that this assumption may not hold, and an important reason for catastrophic forgetting is that the learned representations do not have good robustness against the appearance of analogous relations in the subsequent learning process. To address this issue, we encourage the model to learn more precise and robust representations through a simple yet effective adversarial class augmentation mechanism (ACA), which is easy to implement and model-agnostic.Experimental results show that ACA can consistently improve the performance of state-of-the-art CRE models on two popular benchmarks.