Pei Zhang


2022

pdf
Competency-Aware Neural Machine Translation: Can Machine Translation Know its Own Translation Quality?
Pei Zhang | Baosong Yang | Hao-Ran Wei | Dayiheng Liu | Kai Fan | Luo Si | Jun Xie
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Neural machine translation (NMT) is often criticized for failures that happenwithout awareness. The lack of competency awareness makes NMT untrustworthy. This is in sharp contrast to human translators who give feedback or conduct further investigations whenever they are in doubt about predictions. To fill this gap, we propose a novel competency-aware NMT by extending conventional NMT with a self-estimator, offering abilities to translate a source sentence and estimate its competency.The self-estimator encodes the information of the decoding procedure and then examines whether it can reconstruct the original semantics of the source sentence. Experimental results on four translation tasks demonstrate that the proposed method not only carries out translation tasks intact but also delivers outstanding performance on quality estimation.Without depending on any reference or annotated data typically required by state-of-the-art metric and quality estimation methods, our model yields an even higher correlation with human quality judgments than a variety of aforementioned methods, such as BLEURT, COMET, and BERTScore. Quantitative and qualitative analyses show better robustness of competency awareness in our model.

2021

pdf
Context-Interactive Pre-Training for Document Machine Translation
Pengcheng Yang | Pei Zhang | Boxing Chen | Jun Xie | Weihua Luo
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Document machine translation aims to translate the source sentence into the target language in the presence of additional contextual information. However, it typically suffers from a lack of doc-level bilingual data. To remedy this, here we propose a simple yet effective context-interactive pre-training approach, which targets benefiting from external large-scale corpora. The proposed model performs inter sentence generation to capture the cross-sentence dependency within the target document, and cross sentence translation to make better use of valuable contextual information. Comprehensive experiments illustrate that our approach can achieve state-of-the-art performance on three benchmark datasets, which significantly outperforms a variety of baselines.

2020

pdf
Long-Short Term Masking Transformer: A Simple but Effective Baseline for Document-level Neural Machine Translation
Pei Zhang | Boxing Chen | Niyu Ge | Kai Fan
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Many document-level neural machine translation (NMT) systems have explored the utility of context-aware architecture, usually requiring an increasing number of parameters and computational complexity. However, few attention is paid to the baseline model. In this paper, we research extensively the pros and cons of the standard transformer in document-level translation, and find that the auto-regressive property can simultaneously bring both the advantage of the consistency and the disadvantage of error accumulation. Therefore, we propose a surprisingly simple long-short term masking self-attention on top of the standard transformer to both effectively capture the long-range dependence and reduce the propagation of errors. We examine our approach on the two publicly available document-level datasets. We can achieve a strong result in BLEU and capture discourse phenomena.

2019

pdf
Lattice Transformer for Speech Translation
Pei Zhang | Niyu Ge | Boxing Chen | Kai Fan
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Recent advances in sequence modeling have highlighted the strengths of the transformer architecture, especially in achieving state-of-the-art machine translation results. However, depending on the up-stream systems, e.g., speech recognition, or word segmentation, the input to translation system can vary greatly. The goal of this work is to extend the attention mechanism of the transformer to naturally consume the lattice in addition to the traditional sequential input. We first propose a general lattice transformer for speech translation where the input is the output of the automatic speech recognition (ASR) which contains multiple paths and posterior scores. To leverage the extra information from the lattice structure, we develop a novel controllable lattice attention mechanism to obtain latent representations. On the LDC Spanish-English speech translation corpus, our experiments show that lattice transformer generalizes significantly better and outperforms both a transformer baseline and a lattice LSTM. Additionally, we validate our approach on the WMT 2017 Chinese-English translation task with lattice inputs from different BPE segmentations. In this task, we also observe the improvements over strong baselines.

2018

pdf
Alibaba Speech Translation Systems for IWSLT 2018
Nguyen Bach | Hongjie Chen | Kai Fan | Cheung-Chi Leung | Bo Li | Chongjia Ni | Rong Tong | Pei Zhang | Boxing Chen | Bin Ma | Fei Huang
Proceedings of the 15th International Conference on Spoken Language Translation

This work describes the En→De Alibaba speech translation system developed for the evaluation campaign of the International Workshop on Spoken Language Translation (IWSLT) 2018. In order to improve ASR performance, multiple ASR models including conventional and end-to-end models are built, then we apply model fusion in the final step. ASR pre and post-processing techniques such as speech segmentation, punctuation insertion, and sentence splitting are found to be very useful for MT. We also employed most techniques that have proven effective during the WMT 2018 evaluation, such as BPE, back translation, data selection, model ensembling and reranking. These ASR and MT techniques, combined, improve the speech translation quality significantly.

pdf
Alibaba’s Neural Machine Translation Systems for WMT18
Yongchao Deng | Shanbo Cheng | Jun Lu | Kai Song | Jingang Wang | Shenglan Wu | Liang Yao | Guchun Zhang | Haibo Zhang | Pei Zhang | Changfeng Zhu | Boxing Chen
Proceedings of the Third Conference on Machine Translation: Shared Task Papers

This paper describes the submission systems of Alibaba for WMT18 shared news translation task. We participated in 5 translation directions including English ↔ Russian, English ↔ Turkish in both directions and English → Chinese. Our systems are based on Google’s Transformer model architecture, into which we integrated the most recent features from the academic research. We also employed most techniques that have been proven effective during the past WMT years, such as BPE, back translation, data selection, model ensembling and reranking, at industrial scale. For some morphologically-rich languages, we also incorporated linguistic knowledge into our neural network. For the translation tasks in which we have participated, our resulting systems achieved the best case sensitive BLEU score in all 5 directions. Notably, our English → Russian system outperformed the second reranked system by 5 BLEU score.