Patrick Lee


2022

pdf
CATs are Fuzzy PETs: A Corpus and Analysis of Potentially Euphemistic Terms
Martha Gavidia | Patrick Lee | Anna Feldman | JIng Peng
Proceedings of the Thirteenth Language Resources and Evaluation Conference

Euphemisms have not received much attention in natural language processing, despite being an important element of polite and figurative language. Euphemisms prove to be a difficult topic, not only because they are subject to language change, but also because humans may not agree on what is a euphemism and what is not. Nonetheless, the first step to tackling the issue is to collect and analyze examples of euphemisms. We present a corpus of potentially euphemistic terms (PETs) along with example texts from the GloWbE corpus. Additionally, we present a subcorpus of texts where these PETs are not being used euphemistically, which may be useful for future applications. We also discuss the results of multiple analyses run on the corpus. Firstly, we find that sentiment analysis on the euphemistic texts supports that PETs generally decrease negative and offensive sentiment. Secondly, we observe cases of disagreement in an annotation task, where humans are asked to label PETs as euphemistic or not in a subset of our corpus text examples. We attribute the disagreement to a variety of potential reasons, including if the PET was a commonly accepted term (CAT).

pdf
A Report on the Euphemisms Detection Shared Task
Patrick Lee | Anna Feldman | Jing Peng
Proceedings of the 3rd Workshop on Figurative Language Processing (FLP)

This paper presents The Shared Task on Euphemism Detection for the Third Workshop on Figurative Language Processing (FigLang 2022) held in conjunction with EMNLP 2022. Participants were invited to investigate the euphemism detection task: given input text, identify whether it contains a euphemism. The input data is a corpus of sentences containing potentially euphemistic terms (PETs) collected from the GloWbE corpus, and are human-annotated as containing either a euphemistic or literal usage of a PET. In this paper, we present the results and analyze the common themes, methods and findings of the participating teams.

pdf
Searching for PETs: Using Distributional and Sentiment-Based Methods to Find Potentially Euphemistic Terms
Patrick Lee | Martha Gavidia | Anna Feldman | Jing Peng
Proceedings of the Second Workshop on Understanding Implicit and Underspecified Language

This paper presents a linguistically driven proof of concept for finding potentially euphemistic terms, or PETs. Acknowledging that PETs tend to be commonly used expressions for a certain range of sensitive topics, we make use of distri- butional similarities to select and filter phrase candidates from a sentence and rank them using a set of simple sentiment-based metrics. We present the results of our approach tested on a corpus of sentences containing euphemisms, demonstrating its efficacy for detecting single and multi-word PETs from a broad range of topics. We also discuss future potential for sentiment-based methods on this task.