2021
pdf
abs
Extracting Events from Industrial Incident Reports
Nitin Ramrakhiyani
|
Swapnil Hingmire
|
Sangameshwar Patil
|
Alok Kumar
|
Girish Palshikar
Proceedings of the 4th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE 2021)
Incidents in industries have huge social and political impact and minimizing the consequent damage has been a high priority. However, automated analysis of repositories of incident reports has remained a challenge. In this paper, we focus on automatically extracting events from incident reports. Due to absence of event annotated datasets for industrial incidents we employ a transfer learning based approach which is shown to outperform several baselines. We further provide detailed analysis regarding effect of increase in pre-training data and provide explainability of why pre-training improves the performance.
2020
pdf
abs
Extracting Message Sequence Charts from Hindi Narrative Text
Swapnil Hingmire
|
Nitin Ramrakhiyani
|
Avinash Kumar Singh
|
Sangameshwar Patil
|
Girish Palshikar
|
Pushpak Bhattacharyya
|
Vasudeva Varma
Proceedings of the First Joint Workshop on Narrative Understanding, Storylines, and Events
In this paper, we propose the use of Message Sequence Charts (MSC) as a representation for visualizing narrative text in Hindi. An MSC is a formal representation allowing the depiction of actors and interactions among these actors in a scenario, apart from supporting a rich framework for formal inference. We propose an approach to extract MSC actors and interactions from a Hindi narrative. As a part of the approach, we enrich an existing event annotation scheme where we provide guidelines for annotation of the mood of events (realis vs irrealis) and guidelines for annotation of event arguments. We report performance on multiple evaluation criteria by experimenting with Hindi narratives from Indian History. Though Hindi is the fourth most-spoken first language in the world, from the NLP perspective it has comparatively lesser resources than English. Moreover, there is relatively less work in the context of event processing in Hindi. Hence, we believe that this work is among the initial works for Hindi event processing.
2019
pdf
abs
Extraction of Message Sequence Charts from Software Use-Case Descriptions
Girish Palshikar
|
Nitin Ramrakhiyani
|
Sangameshwar Patil
|
Sachin Pawar
|
Swapnil Hingmire
|
Vasudeva Varma
|
Pushpak Bhattacharyya
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Industry Papers)
Software Requirement Specification documents provide natural language descriptions of the core functional requirements as a set of use-cases. Essentially, each use-case contains a set of actors and sequences of steps describing the interactions among them. Goals of use-case reviews and analyses include their correctness, completeness, detection of ambiguities, prototyping, verification, test case generation and traceability. Message Sequence Chart (MSC) have been proposed as a expressive, rigorous yet intuitive visual representation of use-cases. In this paper, we describe a linguistic knowledge-based approach to extract MSCs from use-cases. Compared to existing techniques, we extract richer constructs of the MSC notation such as timers, conditions and alt-boxes. We apply this tool to extract MSCs from several real-life software use-case descriptions and show that it performs better than the existing techniques. We also discuss the benefits and limitations of the extracted MSCs to meet the above goals.
pdf
abs
Extraction of Message Sequence Charts from Narrative History Text
Girish Palshikar
|
Sachin Pawar
|
Sangameshwar Patil
|
Swapnil Hingmire
|
Nitin Ramrakhiyani
|
Harsimran Bedi
|
Pushpak Bhattacharyya
|
Vasudeva Varma
Proceedings of the First Workshop on Narrative Understanding
In this paper, we advocate the use of Message Sequence Chart (MSC) as a knowledge representation to capture and visualize multi-actor interactions and their temporal ordering. We propose algorithms to automatically extract an MSC from a history narrative. For a given narrative, we first identify verbs which indicate interactions and then use dependency parsing and Semantic Role Labelling based approaches to identify senders (initiating actors) and receivers (other actors involved) for these interaction verbs. As a final step in MSC extraction, we employ a state-of-the art algorithm to temporally re-order these interactions. Our evaluation on multiple publicly available narratives shows improvements over four baselines.
pdf
bib
Towards Disambiguating Contracts for their Successful Execution - A Case from Finance Domain
Preethu Rose Anish
|
Abhishek Sainani
|
Nitin Ramrakhiyani
|
Sachin Pawar
|
Girish K Palshikar
|
Smita Ghaisas
Proceedings of the First Workshop on Financial Technology and Natural Language Processing
2017
pdf
abs
Measuring Topic Coherence through Optimal Word Buckets
Nitin Ramrakhiyani
|
Sachin Pawar
|
Swapnil Hingmire
|
Girish Palshikar
Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers
Measuring topic quality is essential for scoring the learned topics and their subsequent use in Information Retrieval and Text classification. To measure quality of Latent Dirichlet Allocation (LDA) based topics learned from text, we propose a novel approach based on grouping of topic words into buckets (TBuckets). A single large bucket signifies a single coherent theme, in turn indicating high topic coherence. TBuckets uses word embeddings of topic words and employs singular value decomposition (SVD) and Integer Linear Programming based optimization to create coherent word buckets. TBuckets outperforms the state-of-the-art techniques when evaluated using 3 publicly available datasets and on another one proposed in this paper.
2015
pdf
Noun Phrase Chunking for Marathi using Distant Supervision
Sachin Pawar
|
Nitin Ramrakhiyani
|
Girish K. Palshikar
|
Pushpak Bhattacharyya
|
Swapnil Hingmire
Proceedings of the 12th International Conference on Natural Language Processing