Neeraj Varshney


2022

pdf
Towards Improving Selective Prediction Ability of NLP Systems
Neeraj Varshney | Swaroop Mishra | Chitta Baral
Proceedings of the 7th Workshop on Representation Learning for NLP

It’s better to say “I can’t answer” than to answer incorrectly. This selective prediction ability is crucial for NLP systems to be reliably deployed in real-world applications. Prior work has shown that existing selective prediction techniques fail to perform well, especially in the out-of-domain setting. In this work, we propose a method that improves probability estimates of models by calibrating them using prediction confidence and difficulty score of instances. Using these two signals, we first annotate held-out instances and then train a calibrator to predict the likelihood of correctness of the model’s prediction. We instantiate our method with Natural Language Inference (NLI) and Duplicate Detection (DD) tasks and evaluate it in both In-Domain (IID) and Out-of-Domain (OOD) settings. In (IID, OOD) settings, we show that the representations learned by our calibrator result in an improvement of (15.81%, 5.64%) and (6.19%, 13.9%) over ‘MaxProb’ -a selective prediction baseline- on NLI and DD tasks respectively.

pdf
ILDAE: Instance-Level Difficulty Analysis of Evaluation Data
Neeraj Varshney | Swaroop Mishra | Chitta Baral
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Knowledge of difficulty level of questions helps a teacher in several ways, such as estimating students’ potential quickly by asking carefully selected questions and improving quality of examination by modifying trivial and hard questions. Can we extract such benefits of instance difficulty in Natural Language Processing? To this end, we conduct Instance-Level Difficulty Analysis of Evaluation data (ILDAE) in a large-scale setup of 23 datasets and demonstrate its five novel applications: 1) conducting efficient-yet-accurate evaluations with fewer instances saving computational cost and time, 2) improving quality of existing evaluation datasets by repairing erroneous and trivial instances, 3) selecting the best model based on application requirements, 4) analyzing dataset characteristics for guiding future data creation, 5) estimating Out-of-Domain performance reliably. Comprehensive experiments for these applications lead to several interesting results, such as evaluation using just 5% instances (selected via ILDAE) achieves as high as 0.93 Kendall correlation with evaluation using complete dataset and computing weighted accuracy using difficulty scores leads to 5.2% higher correlation with Out-of-Domain performance. We release the difficulty scores and hope our work will encourage research in this important yet understudied field of leveraging instance difficulty in evaluations.

pdf
NumGLUE: A Suite of Fundamental yet Challenging Mathematical Reasoning Tasks
Swaroop Mishra | Arindam Mitra | Neeraj Varshney | Bhavdeep Sachdeva | Peter Clark | Chitta Baral | Ashwin Kalyan
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Given the ubiquitous nature of numbers in text, reasoning with numbers to perform simple calculations is an important skill of AI systems. While many datasets and models have been developed to this end, state-of-the-art AI systems are brittle; failing to perform the underlying mathematical reasoning when they appear in a slightly different scenario. Drawing inspiration from GLUE that was proposed in the context of natural language understanding, we propose NumGLUE, a multi-task benchmark that evaluates the performance of AI systems on eight different tasks, that at their core require simple arithmetic understanding. We show that this benchmark is far from being solved with neural models including state-of-the-art large-scale language models performing significantly worse than humans (lower by 46.4 %). Further, NumGLUE promotes sharing knowledge across tasks, especially those with limited training data as evidenced by the superior performance (average gain of 3.4 % on each task) when a model is jointly trained on all the tasks as opposed to task-specific modeling. Finally, we hope that NumGLUE will encourage systems that perform robust and general arithmetic reasoning within language, a first step towards being able to perform more complex mathematical reasoning.

pdf
Investigating Selective Prediction Approaches Across Several Tasks in IID, OOD, and Adversarial Settings
Neeraj Varshney | Swaroop Mishra | Chitta Baral
Findings of the Association for Computational Linguistics: ACL 2022

In order to equip NLP systems with ‘selective prediction’ capability, several task-specific approaches have been proposed. However, which approaches work best across tasks or even if they consistently outperform the simplest baseline MaxProb remains to be explored. To this end, we systematically study selective prediction in a large-scale setup of 17 datasets across several NLP tasks. Through comprehensive experiments under in-domain (IID), out-of-domain (OOD), and adversarial (ADV) settings, we show that despite leveraging additional resources (held-out data/computation), none of the existing approaches consistently and considerably outperforms MaxProb in all three settings. Furthermore, their performance does not translate well across tasks. For instance, Monte-Carlo Dropout outperforms all other approaches on Duplicate Detection datasets but does not fare well on NLI datasets, especially in the OOD setting. Thus, we recommend that future selective prediction approaches should be evaluated across tasks and settings for reliable estimation of their capabilities.

pdf
Unsupervised Natural Language Inference Using PHL Triplet Generation
Neeraj Varshney | Pratyay Banerjee | Tejas Gokhale | Chitta Baral
Findings of the Association for Computational Linguistics: ACL 2022

Transformer-based models achieve impressive performance on numerous Natural Language Inference (NLI) benchmarks when trained on respective training datasets. However, in certain cases, training samples may not be available or collecting them could be time-consuming and resource-intensive. In this work, we address the above challenge and present an explorative study on unsupervised NLI, a paradigm in which no human-annotated training samples are available. We investigate it under three settings: PH, P, and NPH that differ in the extent of unlabeled data available for learning. As a solution, we propose a procedural data generation approach that leverages a set of sentence transformations to collect PHL (Premise, Hypothesis, Label) triplets for training NLI models, bypassing the need for human-annotated training data. Comprehensive experiments with several NLI datasets show that the proposed approach results in accuracies of up to 66.75%, 65.9%, 65.39% in PH, P, and NPH settings respectively, outperforming all existing unsupervised baselines. Furthermore, fine-tuning our model with as little as ~0.1% of the human-annotated training dataset (500 instances) leads to 12.2% higher accuracy than the model trained from scratch on the same 500 instances. Supported by this superior performance, we conclude with a recommendation for collecting high-quality task-specific data.

pdf
Super-NaturalInstructions: Generalization via Declarative Instructions on 1600+ NLP Tasks
Yizhong Wang | Swaroop Mishra | Pegah Alipoormolabashi | Yeganeh Kordi | Amirreza Mirzaei | Atharva Naik | Arjun Ashok | Arut Selvan Dhanasekaran | Anjana Arunkumar | David Stap | Eshaan Pathak | Giannis Karamanolakis | Haizhi Lai | Ishan Purohit | Ishani Mondal | Jacob Anderson | Kirby Kuznia | Krima Doshi | Kuntal Kumar Pal | Maitreya Patel | Mehrad Moradshahi | Mihir Parmar | Mirali Purohit | Neeraj Varshney | Phani Rohitha Kaza | Pulkit Verma | Ravsehaj Singh Puri | Rushang Karia | Savan Doshi | Shailaja Keyur Sampat | Siddhartha Mishra | Sujan Reddy A | Sumanta Patro | Tanay Dixit | Xudong Shen
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

How well can NLP models generalize to a variety of unseen tasks when provided with task instructions? To address this question, we first introduce Super-NaturalInstructions, a benchmark of 1,616 diverse NLP tasks and their expert-written instructions. Our collection covers 76 distinct task types, including but not limited to classification, extraction, infilling, sequence tagging, text rewriting, and text composition. This large and diverse collection of tasks enables rigorous benchmarking of cross-task generalization under instructions—training models to follow instructions on a subset of tasks and evaluating them on the remaining unseen ones.Furthermore, we build Tk-Instruct, a transformer model trained to follow a variety of in-context instructions (plain language task definitions or k-shot examples). Our experiments show that Tk-Instruct outperforms existing instruction-following models such as InstructGPT by over 9% on our benchmark despite being an order of magnitude smaller. We further analyze generalization as a function of various scaling parameters, such as the number of observed tasks, the number of instances per task, and model sizes. We hope our dataset and model facilitate future progress towards more general-purpose NLP models.

pdf
Model Cascading: Towards Jointly Improving Efficiency and Accuracy of NLP Systems
Neeraj Varshney | Chitta Baral
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Do all instances need inference through the big models for a correct prediction? Perhaps not; some instances are easy and can be answered correctly by even small capacity models. This provides opportunities for improving the computational efficiency of systems. In this work, we present an explorative study on ‘model cascading’, a simple technique that utilizes a collection of models of varying capacities to accurately yet efficiently output predictions. Through comprehensive experiments in multiple task settings that differ in the number of models available for cascading (K value), we show that cascading improves both the computational efficiency and the prediction accuracy. For instance, in K=3 setting, cascading saves up to 88.93% computation cost and consistently achieves superior prediction accuracy with an improvement of up to 2.18%. We also study the impact of introducing additional models in the cascade and show that it further increases the efficiency improvements. Finally, we hope that our work will facilitate development of efficient NLP systems making their widespread adoption in real-world applications possible.

pdf
Let the Model Decide its Curriculum for Multitask Learning
Neeraj Varshney | Swaroop Mishra | Chitta Baral
Proceedings of the Third Workshop on Deep Learning for Low-Resource Natural Language Processing

Curriculum learning strategies in prior multitask learning approaches arrange datasets in a difficulty hierarchy either based on human perception or by exhaustively searching the optimal arrangement. However, human perception of difficulty may not always correlate well with machine interpretation leading to poor performance and exhaustive search is computationally expensive. Addressing these concerns, we propose two classes of techniques to arrange training instances into a learning curriculum based on difficulty scores computed via model-based approaches. The two classes i.e Dataset-level and Instance-level differ in granularity of arrangement. Through comprehensive experiments with 12 datasets, we show that instance-level and dataset-level techniques result in strong representations as they lead to an average performance improvement of 4.17% and 3.15% over their respective baselines. Furthermore, we find that most of this improvement comes from correctly answering the difficult instances, implying a greater efficacy of our techniques on difficult tasks