Najoung Kim


2021

pdf
Which Linguist Invented the Lightbulb? Presupposition Verification for Question-Answering
Najoung Kim | Ellie Pavlick | Burcu Karagol Ayan | Deepak Ramachandran
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Many Question-Answering (QA) datasets contain unanswerable questions, but their treatment in QA systems remains primitive. Our analysis of the Natural Questions (Kwiatkowski et al. 2019) dataset reveals that a substantial portion of unanswerable questions (~21%) can be explained based on the presence of unverifiable presuppositions. Through a user preference study, we demonstrate that the oracle behavior of our proposed system—which provides responses based on presupposition failure—is preferred over the oracle behavior of existing QA systems. Then, we present a novel framework for implementing such a system in three steps: presupposition generation, presupposition verification, and explanation generation, reporting progress on each. Finally, we show that a simple modification of adding presuppositions and their verifiability to the input of a competitive end-to-end QA system yields modest gains in QA performance and unanswerability detection, demonstrating the promise of our approach.

pdf
Testing for Grammatical Category Abstraction in Neural Language Models
Najoung Kim | Paul Smolensky
Proceedings of the Society for Computation in Linguistics 2021

2020

pdf
Implicit Discourse Relation Classification: We Need to Talk about Evaluation
Najoung Kim | Song Feng | Chulaka Gunasekara | Luis Lastras
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Implicit relation classification on Penn Discourse TreeBank (PDTB) 2.0 is a common benchmark task for evaluating the understanding of discourse relations. However, the lack of consistency in preprocessing and evaluation poses challenges to fair comparison of results in the literature. In this work, we highlight these inconsistencies and propose an improved evaluation protocol. Paired with this protocol, we report strong baseline results from pretrained sentence encoders, which set the new state-of-the-art for PDTB 2.0. Furthermore, this work is the first to explore fine-grained relation classification on PDTB 3.0. We expect our work to serve as a point of comparison for future work, and also as an initiative to discuss models of larger context and possible data augmentations for downstream transferability.

pdf
COGS: A Compositional Generalization Challenge Based on Semantic Interpretation
Najoung Kim | Tal Linzen
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Natural language is characterized by compositionality: the meaning of a complex expression is constructed from the meanings of its constituent parts. To facilitate the evaluation of the compositional abilities of language processing architectures, we introduce COGS, a semantic parsing dataset based on a fragment of English. The evaluation portion of COGS contains multiple systematic gaps that can only be addressed by compositional generalization; these include new combinations of familiar syntactic structures, or new combinations of familiar words and familiar structures. In experiments with Transformers and LSTMs, we found that in-distribution accuracy on the COGS test set was near-perfect (96–99%), but generalization accuracy was substantially lower (16–35%) and showed high sensitivity to random seed (+-6–8%). These findings indicate that contemporary standard NLP models are limited in their compositional generalization capacity, and position COGS as a good way to measure progress.

2019

pdf
Probing What Different NLP Tasks Teach Machines about Function Word Comprehension
Najoung Kim | Roma Patel | Adam Poliak | Patrick Xia | Alex Wang | Tom McCoy | Ian Tenney | Alexis Ross | Tal Linzen | Benjamin Van Durme | Samuel R. Bowman | Ellie Pavlick
Proceedings of the Eighth Joint Conference on Lexical and Computational Semantics (*SEM 2019)

We introduce a set of nine challenge tasks that test for the understanding of function words. These tasks are created by structurally mutating sentences from existing datasets to target the comprehension of specific types of function words (e.g., prepositions, wh-words). Using these probing tasks, we explore the effects of various pretraining objectives for sentence encoders (e.g., language modeling, CCG supertagging and natural language inference (NLI)) on the learned representations. Our results show that pretraining on CCG—our most syntactic objective—performs the best on average across our probing tasks, suggesting that syntactic knowledge helps function word comprehension. Language modeling also shows strong performance, supporting its widespread use for pretraining state-of-the-art NLP models. Overall, no pretraining objective dominates across the board, and our function word probing tasks highlight several intuitive differences between pretraining objectives, e.g., that NLI helps the comprehension of negation.

pdf
Can You Tell Me How to Get Past Sesame Street? Sentence-Level Pretraining Beyond Language Modeling
Alex Wang | Jan Hula | Patrick Xia | Raghavendra Pappagari | R. Thomas McCoy | Roma Patel | Najoung Kim | Ian Tenney | Yinghui Huang | Katherin Yu | Shuning Jin | Berlin Chen | Benjamin Van Durme | Edouard Grave | Ellie Pavlick | Samuel R. Bowman
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Natural language understanding has recently seen a surge of progress with the use of sentence encoders like ELMo (Peters et al., 2018a) and BERT (Devlin et al., 2019) which are pretrained on variants of language modeling. We conduct the first large-scale systematic study of candidate pretraining tasks, comparing 19 different tasks both as alternatives and complements to language modeling. Our primary results support the use language modeling, especially when combined with pretraining on additional labeled-data tasks. However, our results are mixed across pretraining tasks and show some concerning trends: In ELMo’s pretrain-then-freeze paradigm, random baselines are worryingly strong and results vary strikingly across target tasks. In addition, fine-tuning BERT on an intermediate task often negatively impacts downstream transfer. In a more positive trend, we see modest gains from multitask training, suggesting the development of more sophisticated multitask and transfer learning techniques as an avenue for further research.