Muhammad Khalifa


2021

pdf
Extracting Synonyms from Bilingual Dictionaries
Mustafa Jarrar | Eman Naser | Muhammad Khalifa | Khaled Shaalan
Proceedings of the 11th Global Wordnet Conference

We present our progress in developing a novel algorithm to extract synonyms from bilingual dictionaries. Identification and usage of synonyms play a significant role in improving the performance of information access applications. The idea is to construct a translation graph from translation pairs, then to extract and consolidate cyclic paths to form bilingual sets of synonyms. The initial evaluation of this algorithm illustrates promising results in extracting Arabic-English bilingual synonyms. In the evaluation, we first converted the synsets in the Arabic WordNet into translation pairs (i.e., losing word-sense memberships). Next, we applied our algorithm to rebuild these synsets. We compared the original and extracted synsets obtaining an F-Measure of 82.3% and 82.1% for Arabic and English synsets extraction, respectively.

pdf
A Bag of Tricks for Dialogue Summarization
Muhammad Khalifa | Miguel Ballesteros | Kathleen McKeown
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Dialogue summarization comes with its own peculiar challenges as opposed to news or scientific articles summarization. In this work, we explore four different challenges of the task: handling and differentiating parts of the dialogue belonging to multiple speakers, negation understanding, reasoning about the situation, and informal language understanding. Using a pretrained sequence-to-sequence language model, we explore speaker name substitution, negation scope highlighting, multi-task learning with relevant tasks, and pretraining on in-domain data. Our experiments show that our proposed techniques indeed improve summarization performance, outperforming strong baselines.

pdf
Self-Training Pre-Trained Language Models for Zero- and Few-Shot Multi-Dialectal Arabic Sequence Labeling
Muhammad Khalifa | Muhammad Abdul-Mageed | Khaled Shaalan
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

A sufficient amount of annotated data is usually required to fine-tune pre-trained language models for downstream tasks. Unfortunately, attaining labeled data can be costly, especially for multiple language varieties and dialects. We propose to self-train pre-trained language models in zero- and few-shot scenarios to improve performance on data-scarce varieties using only resources from data-rich ones. We demonstrate the utility of our approach in the context of Arabic sequence labeling by using a language model fine-tuned on Modern Standard Arabic (MSA) only to predict named entities (NE) and part-of-speech (POS) tags on several dialectal Arabic (DA) varieties. We show that self-training is indeed powerful, improving zero-shot MSA-to-DA transfer by as large as ˷10% F1 (NER) and 2% accuracy (POS tagging). We acquire even better performance in few-shot scenarios with limited amounts of labeled data. We conduct an ablation study and show that the performance boost observed directly results from training data augmentation possible with DA examples via self-training. This opens up opportunities for developing DA models exploiting only MSA resources. Our approach can also be extended to other languages and tasks.