Skill routing is an important component in large-scale conversational systems. In contrast to traditional rule-based skill routing, state-of-the-art systems use a model-based approach to enable natural conversations. To provide supervision signal required to train such models, ideas such as human annotation, replication of a rule-based system, relabeling based on user paraphrases, and bandit-based learning were suggested. However, these approaches: (a) do not scale in terms of the number of skills and skill on-boarding, (b) require a very costly expert annotation/rule-design, (c) introduce risks in the user experience with each model update. In this paper, we present a scalable self-learning approach to explore routing alternatives without causing abrupt policy changes that break the user experience, learn from the user interaction, and incrementally improve the routing via frequent model refreshes. To enable such robust frequent model updates, we suggest a simple and effective approach that ensures controlled policy updates for individual domains, followed by an off-policy evaluation for making deployment decisions without any need for lengthy A/B experimentation. We conduct various offline and online A/B experiments on a commercial large-scale conversational system to demonstrate the effectiveness of the proposed method in real-world production settings.
In many real-world machine learning applications, samples belong to a set of domains e.g., for product reviews each review belongs to a product category. In this paper, we study multi-domain imbalanced learning (MIL), the scenario that there is imbalance not only in classes but also in domains. In the MIL setting, different domains exhibit different patterns and there is a varying degree of similarity and divergence among domains posing opportunities and challenges for transfer learning especially when faced with limited or insufficient training data.We propose a novel domain-aware contrastive knowledge transfer method called DCMI to (1) identify the shared domain knowledge to encourage positive transfer among similar domains (in particular from head domains to tail domains); (2) isolate the domain-specific knowledge to minimize the negative transfer from dissimilar domains. We evaluated the performance of DCMI on three different datasets showing significant improvements in different MIL scenarios.
Turn-level user satisfaction is one of the most important performance metrics for conversational agents. It can be used to monitor the agent’s performance and provide insights about defective user experiences. While end-to-end deep learning has shown promising results, having access to a large number of reliable annotated samples required by these methods remains challenging. In a large-scale conversational system, there is a growing number of newly developed skills, making the traditional data collection, annotation, and modeling process impractical due to the required annotation costs and the turnaround times. In this paper, we suggest a self-supervised contrastive learning approach that leverages the pool of unlabeled data to learn user-agent interactions. We show that the pre-trained models using the self-supervised objective are transferable to the user satisfaction prediction. In addition, we propose a novel few-shot transfer learning approach that ensures better transferability for very small sample sizes. The suggested few-shot method does not require any inner loop optimization process and is scalable to very large datasets and complex models. Based on our experiments using real data from a large-scale commercial system, the suggested approach is able to significantly reduce the required number of annotations, while improving the generalization on unseen skills.