Melania Berbatova


2022

pdf
The Bulgarian Event Corpus: Overview and Initial NER Experiments
Petya Osenova | Kiril Simov | Iva Marinova | Melania Berbatova
Proceedings of the Thirteenth Language Resources and Evaluation Conference

The paper describes the Bulgarian Event Corpus (BEC). The annotation scheme is based on CIDOC-CRM ontology and on the English Framenet, adjusted for our task. It includes two main layers: named entities and events with their roles. The corpus is multi-domain and mainly oriented towards Social Sciences and Humanities (SSH). It will be used for: extracting knowledge and making it available through the Bulgaria-centric Knowledge Graph; further developing an annotation scheme that handles multiple domains in SSH; training automatic modules for the most important knowledge-based tasks, such as domain-specific and nested NER, NEL, event detection and profiling. Initial experiments were conducted on standard NER task due to complexity of the dataset and the rich NE annotation scheme. The results are promising with respect to some labels and give insights on handling better other ones. These experiments serve also as error detection modules that would help us in scheme re-design. They are a basis for further and more complex tasks, such as nested NER, NEL and event detection.

2019

pdf
Overview on NLP Techniques for Content-based Recommender Systems for Books
Melania Berbatova
Proceedings of the Student Research Workshop Associated with RANLP 2019

Recommender systems are an essential part of today’s largest websites. Without them, it would be hard for users to find the right products and content. One of the most popular methods for recommendations is content-based filtering. It relies on analysing product metadata, a great part of which is textual data. Despite their frequent use, there is still no standard procedure for developing and evaluating content-based recommenders. In this paper, we will first examine current approaches for designing, training and evaluating recommender systems based on textual data for books recommendations for GoodReads’ website. We will give critiques on existing methods and suggest how natural language techniques can be employed for the improvement of content-based recommenders.