Marco Gaido


2022

pdf bib
Over-Generation Cannot Be Rewarded: Length-Adaptive Average Lagging for Simultaneous Speech Translation
Sara Papi | Marco Gaido | Matteo Negri | Marco Turchi
Proceedings of the Third Workshop on Automatic Simultaneous Translation

Simultaneous speech translation (SimulST) systems aim at generating their output with the lowest possible latency, which is normally computed in terms of Average Lagging (AL). In this paper we highlight that, despite its widespread adoption, AL provides underestimated scores for systems that generate longer predictions compared to the corresponding references. We also show that this problem has practical relevance, as recent SimulST systems have indeed a tendency to over-generate. As a solution, we propose LAAL (Length-Adaptive Average Lagging), a modified version of the metric that takes into account the over-generation phenomenon and allows for unbiased evaluation of both under-/over-generating systems.

pdf
Under the Morphosyntactic Lens: A Multifaceted Evaluation of Gender Bias in Speech Translation
Beatrice Savoldi | Marco Gaido | Luisa Bentivogli | Matteo Negri | Marco Turchi
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Gender bias is largely recognized as a problematic phenomenon affecting language technologies, with recent studies underscoring that it might surface differently across languages. However, most of current evaluation practices adopt a word-level focus on a narrow set of occupational nouns under synthetic conditions. Such protocols overlook key features of grammatical gender languages, which are characterized by morphosyntactic chains of gender agreement, marked on a variety of lexical items and parts-of-speech (POS). To overcome this limitation, we enrich the natural, gender-sensitive MuST-SHE corpus (Bentivogli et al., 2020) with two new linguistic annotation layers (POS and agreement chains), and explore to what extent different lexical categories and agreement phenomena are impacted by gender skews. Focusing on speech translation, we conduct a multifaceted evaluation on three language directions (English-French/Italian/Spanish), with models trained on varying amounts of data and different word segmentation techniques. By shedding light on model behaviours, gender bias, and its detection at several levels of granularity, our findings emphasize the value of dedicated analyses beyond aggregated overall results.

pdf
On the Dynamics of Gender Learning in Speech Translation
Beatrice Savoldi | Marco Gaido | Luisa Bentivogli | Matteo Negri | Marco Turchi
Proceedings of the 4th Workshop on Gender Bias in Natural Language Processing (GeBNLP)

Due to the complexity of bias and the opaque nature of current neural approaches, there is a rising interest in auditing language technologies. In this work, we contribute to such a line of inquiry by exploring the emergence of gender bias in Speech Translation (ST). As a new perspective, rather than focusing on the final systems only, we examine their evolution over the course of training. In this way, we are able to account for different variables related to the learning dynamics of gender translation, and investigate when and how gender divides emerge in ST. Accordingly, for three language pairs (en ? es, fr, it) we compare how ST systems behave for masculine and feminine translation at several levels of granularity. We find that masculine and feminine curves are dissimilar, with the feminine one being characterized by more erratic behaviour and late improvements over the course of training. Also, depending on the considered phenomena, their learning trends can be either antiphase or parallel. Overall, we show how such a progressive analysis can inform on the reliability and time-wise acquisition of gender, which is concealed by static evaluations and standard metrics.

pdf
Does Simultaneous Speech Translation need Simultaneous Models?
Sara Papi | Marco Gaido | Matteo Negri | Marco Turchi
Findings of the Association for Computational Linguistics: EMNLP 2022

In simultaneous speech translation (SimulST), finding the best trade-off between high output quality and low latency is a challenging task. To meet the latency constraints posed by different application scenarios, multiple dedicated SimulST models are usually trained and maintained, generating high computational costs. In this paper, also motivated by the increased sensitivity towards sustainable AI, we investigate whether a single model trained offline can serve both offline and simultaneous applications under different latency regimes without additional training or adaptation. Experiments on en->de, es show that, aside from facilitating the adoption of well-established offline architectures and training strategies without affecting latency, offline training achieves similar or better quality compared to the standard SimulST training protocol, also being competitive with the state-of-the-art system.

pdf
Who Are We Talking About? Handling Person Names in Speech Translation
Marco Gaido | Matteo Negri | Marco Turchi
Proceedings of the 19th International Conference on Spoken Language Translation (IWSLT 2022)

Recent work has shown that systems for speech translation (ST) – similarly to automatic speech recognition (ASR) – poorly handle person names. This shortcoming does not only lead to errors that can seriously distort the meaning of the input, but also hinders the adoption of such systems in application scenarios (like computer-assisted interpreting) where the translation of named entities, like person names, is crucial. In this paper, we first analyse the outputs of ASR/ST systems to identify the reasons of failures in person name transcription/translation. Besides the frequency in the training data, we pinpoint the nationality of the referred person as a key factor. We then mitigate the problem by creating multilingual models, and further improve our ST systems by forcing them to jointly generate transcripts and translations, prioritising the former over the latter. Overall, our solutions result in a relative improvement in token-level person name accuracy by 47.8% on average for three language pairs (en->es,fr,it).

pdf
Efficient yet Competitive Speech Translation: FBK@IWSLT2022
Marco Gaido | Sara Papi | Dennis Fucci | Giuseppe Fiameni | Matteo Negri | Marco Turchi
Proceedings of the 19th International Conference on Spoken Language Translation (IWSLT 2022)

The primary goal of this FBK’s systems submission to the IWSLT 2022 offline and simultaneous speech translation tasks is to reduce model training costs without sacrificing translation quality. As such, we first question the need of ASR pre-training, showing that it is not essential to achieve competitive results. Second, we focus on data filtering, showing that a simple method that looks at the ratio between source and target characters yields a quality improvement of 1 BLEU. Third, we compare different methods to reduce the detrimental effect of the audio segmentation mismatch between training data manually segmented at sentence level and inference data that is automatically segmented. Towards the same goal of training cost reduction, we participate in the simultaneous task with the same model trained for offline ST. The effectiveness of our lightweight training strategy is shown by the high score obtained on the MuST-C en-de corpus (26.7 BLEU) and is confirmed in high-resource data conditions by a 1.6 BLEU improvement on the IWSLT2020 test set over last year’s winning system.

pdf
Extending the MuST-C Corpus for a Comparative Evaluation of Speech Translation Technology
Luisa Bentivogli | Mauro Cettolo | Marco Gaido | Alina Karakanta | Matteo Negri | Marco Turchi
Proceedings of the 23rd Annual Conference of the European Association for Machine Translation

This project aimed at extending the test sets of the MuST-C speech translation (ST) corpus with new reference translations. The new references were collected from professional post-editors working on the output of different ST systems for three language pairs: English-German/Italian/Spanish. In this paper, we shortly describe how the data were collected and how they are distributed. As an evidence of their usefulness, we also summarise the findings of the first comparative evaluation of cascade and direct ST approaches, which was carried out relying on the collected data. The project was partially funded by the European Association for Machine Translation (EAMT) through its 2020 Sponsorship of Activities programme.

2021

pdf
Speechformer: Reducing Information Loss in Direct Speech Translation
Sara Papi | Marco Gaido | Matteo Negri | Marco Turchi
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Transformer-based models have gained increasing popularity achieving state-of-the-art performance in many research fields including speech translation. However, Transformer’s quadratic complexity with respect to the input sequence length prevents its adoption as is with audio signals, which are typically represented by long sequences. Current solutions resort to an initial sub-optimal compression based on a fixed sampling of raw audio features. Therefore, potentially useful linguistic information is not accessible to higher-level layers in the architecture. To solve this issue, we propose Speechformer, an architecture that, thanks to reduced memory usage in the attention layers, avoids the initial lossy compression and aggregates information only at a higher level according to more informed linguistic criteria. Experiments on three language pairs (en→de/es/nl) show the efficacy of our solution, with gains of up to 0.8 BLEU on the standard MuST-C corpus and of up to 4.0 BLEU in a low resource scenario.

pdf
Is “moby dick” a Whale or a Bird? Named Entities and Terminology in Speech Translation
Marco Gaido | Susana Rodríguez | Matteo Negri | Luisa Bentivogli | Marco Turchi
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Automatic translation systems are known to struggle with rare words. Among these, named entities (NEs) and domain-specific terms are crucial, since errors in their translation can lead to severe meaning distortions. Despite their importance, previous speech translation (ST) studies have neglected them, also due to the dearth of publicly available resources tailored to their specific evaluation. To fill this gap, we i) present the first systematic analysis of the behavior of state-of-the-art ST systems in translating NEs and terminology, and ii) release NEuRoparl-ST, a novel benchmark built from European Parliament speeches annotated with NEs and terminology. Our experiments on the three language directions covered by our benchmark (en→es/fr/it) show that ST systems correctly translate 75–80% of terms and 65–70% of NEs, with very low performance (37–40%) on person names.

pdf
Gender Bias in Machine Translation
Beatrice Savoldi | Marco Gaido | Luisa Bentivogli | Matteo Negri | Marco Turchi
Transactions of the Association for Computational Linguistics, Volume 9

AbstractMachine translation (MT) technology has facilitated our daily tasks by providing accessible shortcuts for gathering, processing, and communicating information. However, it can suffer from biases that harm users and society at large. As a relatively new field of inquiry, studies of gender bias in MT still lack cohesion. This advocates for a unified framework to ease future research. To this end, we: i) critically review current conceptualizations of bias in light of theoretical insights from related disciplines, ii) summarize previous analyses aimed at assessing gender bias in MT, iii) discuss the mitigating strategies proposed so far, and iv) point toward potential directions for future work.

pdf
Beyond Voice Activity Detection: Hybrid Audio Segmentation for Direct Speech Translation
Marco Gaido | Matteo Negri | Mauro Cettolo | Marco Turchi
Proceedings of the 4th International Conference on Natural Language and Speech Processing (ICNLSP 2021)

pdf
Dealing with training and test segmentation mismatch: FBK@IWSLT2021
Sara Papi | Marco Gaido | Matteo Negri | Marco Turchi
Proceedings of the 18th International Conference on Spoken Language Translation (IWSLT 2021)

This paper describes FBK’s system submission to the IWSLT 2021 Offline Speech Translation task. We participated with a direct model, which is a Transformer-based architecture trained to translate English speech audio data into German texts. The training pipeline is characterized by knowledge distillation and a two-step fine-tuning procedure. Both knowledge distillation and the first fine-tuning step are carried out on manually segmented real and synthetic data, the latter being generated with an MT system trained on the available corpora. Differently, the second fine-tuning step is carried out on a random segmentation of the MuST-C v2 En-De dataset. Its main goal is to reduce the performance drops occurring when a speech translation model trained on manually segmented data (i.e. an ideal, sentence-like segmentation) is evaluated on automatically segmented audio (i.e. actual, more realistic testing conditions). For the same purpose, a custom hybrid segmentation procedure that accounts for both audio content (pauses) and for the length of the produced segments is applied to the test data before passing them to the system. At inference time, we compared this procedure with a baseline segmentation method based on Voice Activity Detection (VAD). Our results indicate the effectiveness of the proposed hybrid approach, shown by a reduction of the gap with manual segmentation from 8.3 to 1.4 BLEU points.

pdf
Between Flexibility and Consistency: Joint Generation of Captions and Subtitles
Alina Karakanta | Marco Gaido | Matteo Negri | Marco Turchi
Proceedings of the 18th International Conference on Spoken Language Translation (IWSLT 2021)

Speech translation (ST) has lately received growing interest for the generation of subtitles without the need for an intermediate source language transcription and timing (i.e. captions). However, the joint generation of source captions and target subtitles does not only bring potential output quality advantages when the two decoding processes inform each other, but it is also often required in multilingual scenarios. In this work, we focus on ST models which generate consistent captions-subtitles in terms of structure and lexical content. We further introduce new metrics for evaluating subtitling consistency. Our findings show that joint decoding leads to increased performance and consistency between the generated captions and subtitles while still allowing for sufficient flexibility to produce subtitles conforming to language-specific needs and norms.

pdf
CTC-based Compression for Direct Speech Translation
Marco Gaido | Mauro Cettolo | Matteo Negri | Marco Turchi
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

Previous studies demonstrated that a dynamic phone-informed compression of the input audio is beneficial for speech translation (ST). However, they required a dedicated model for phone recognition and did not test this solution for direct ST, in which a single model translates the input audio into the target language without intermediate representations. In this work, we propose the first method able to perform a dynamic compression of the input in direct ST models. In particular, we exploit the Connectionist Temporal Classification (CTC) to compress the input sequence according to its phonetic characteristics. Our experiments demonstrate that our solution brings a 1.3-1.5 BLEU improvement over a strong baseline on two language pairs (English-Italian and English-German), contextually reducing the memory footprint by more than 10%.

pdf
How to Split: the Effect of Word Segmentation on Gender Bias in Speech Translation
Marco Gaido | Beatrice Savoldi | Luisa Bentivogli | Matteo Negri | Marco Turchi
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf
Cascade versus Direct Speech Translation: Do the Differences Still Make a Difference?
Luisa Bentivogli | Mauro Cettolo | Marco Gaido | Alina Karakanta | Alberto Martinelli | Matteo Negri | Marco Turchi
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Five years after the first published proofs of concept, direct approaches to speech translation (ST) are now competing with traditional cascade solutions. In light of this steady progress, can we claim that the performance gap between the two is closed? Starting from this question, we present a systematic comparison between state-of-the-art systems representative of the two paradigms. Focusing on three language directions (English-German/Italian/Spanish), we conduct automatic and manual evaluations, exploiting high-quality professional post-edits and annotations. Our multi-faceted analysis on one of the few publicly available ST benchmarks attests for the first time that: i) the gap between the two paradigms is now closed, and ii) the subtle differences observed in their behavior are not sufficient for humans neither to distinguish them nor to prefer one over the other.

2020

pdf
On Target Segmentation for Direct Speech Translation
Mattia A. Di Gangi | Marco Gaido | Matteo Negri | Marco Turchi
Proceedings of the 14th Conference of the Association for Machine Translation in the Americas (Volume 1: Research Track)

pdf
End-to-End Speech-Translation with Knowledge Distillation: FBK@IWSLT2020
Marco Gaido | Mattia A. Di Gangi | Matteo Negri | Marco Turchi
Proceedings of the 17th International Conference on Spoken Language Translation

This paper describes FBK’s participation in the IWSLT 2020 offline speech translation (ST) task. The task evaluates systems’ ability to translate English TED talks audio into German texts. The test talks are provided in two versions: one contains the data already segmented with automatic tools and the other is the raw data without any segmentation. Participants can decide whether to work on custom segmentation or not. We used the provided segmentation. Our system is an end-to-end model based on an adaptation of the Transformer for speech data. Its training process is the main focus of this paper and it is based on: i) transfer learning (ASR pretraining and knowledge distillation), ii) data augmentation (SpecAugment, time stretch and synthetic data), iii)combining synthetic and real data marked as different domains, and iv) multi-task learning using the CTC loss. Finally, after the training with word-level knowledge distillation is complete, our ST models are fine-tuned using label smoothed cross entropy. Our best model scored 29 BLEU on the MuST-CEn-De test set, which is an excellent result compared to recent papers, and 23.7 BLEU on the same data segmented with VAD, showing the need for researching solutions addressing this specific data condition.

pdf
Breeding Gender-aware Direct Speech Translation Systems
Marco Gaido | Beatrice Savoldi | Luisa Bentivogli | Matteo Negri | Marco Turchi
Proceedings of the 28th International Conference on Computational Linguistics

In automatic speech translation (ST), traditional cascade approaches involving separate transcription and translation steps are giving ground to increasingly competitive and more robust direct solutions. In particular, by translating speech audio data without intermediate transcription, direct ST models are able to leverage and preserve essential information present in the input (e.g.speaker’s vocal characteristics) that is otherwise lost in the cascade framework. Although such ability proved to be useful for gender translation, direct ST is nonetheless affected by gender bias just like its cascade counterpart, as well as machine translation and numerous other natural language processing applications. Moreover, direct ST systems that exclusively rely on vocal biometric features as a gender cue can be unsuitable or even potentially problematic for certain users. Going beyond speech signals, in this paper we compare different approaches to inform direct ST models about the speaker’s gender and test their ability to handle gender translation from English into Italian and French. To this aim, we manually annotated large datasets with speak-ers’ gender information and used them for experiments reflecting different possible real-world scenarios. Our results show that gender-aware direct ST solutions can significantly outperform strong – but gender-unaware – direct ST models. In particular, the translation of gender-marked words can increase up to 30 points in accuracy while preserving overall translation quality.