Manon Macary


2020

pdf
Prédiction continue de la satisfaction et de la frustration dans des conversations de centre d’appels (AlloSat : A New Call Center French Corpus for Affect Analysis)
Manon Macary | Marie Tahon | Yannick Estève | Anthony Rousseau
Actes de la 6e conférence conjointe Journées d'Études sur la Parole (JEP, 33e édition), Traitement Automatique des Langues Naturelles (TALN, 27e édition), Rencontre des Étudiants Chercheurs en Informatique pour le Traitement Automatique des Langues (RÉCITAL, 22e édition). Volume 1 : Journées d'Études sur la Parole

Nous présentons un nouveau corpus, nommé AlloSat, composé de conversations en français extraites de centre d’appels, annotées de façon continue en frustration et satisfaction. Dans le contexte des centres d’appels, une conversation vise généralement à résoudre la demande de l’appelant. Ce corpus a été mis en place afin de développer de nouveaux systèmes capables de modéliser l’aspect continu de l’information sémantique et para-linguistique au niveau conversationnel. Nous nous concentrons sur le niveau para-linguistique, plus précisément sur l’expression des émotions. À notre connaissance, la plupart des corpus émotionnels contiennent des annotations en catégories discrètes ou dans des dimensions continues telles que l’activation ou la valence. Nous supposons que ces dimensions ne sont pas suffisamment liées à notre contexte. Pour résoudre ce problème, nous proposons un corpus permettant une connaissance en temps réel de l’axe frustration/satisfaction. AlloSat regroupe 303 conversations pour un total d’environ 37 heures d’audio, toutes enregistrées dans des environnements réels, collectées par Allo-Media (une société spécialisée dans l’analyse automatique d’appels). Les premières expériences de classification montrent que l’évolution de l’axe frustration/satisfaction peut être prédite automatiquement par conversation.

pdf
AlloSat: A New Call Center French Corpus for Satisfaction and Frustration Analysis
Manon Macary | Marie Tahon | Yannick Estève | Anthony Rousseau
Proceedings of the Twelfth Language Resources and Evaluation Conference

We present a new corpus, named AlloSat, composed of real-life call center conversations in French that is continuously annotated in frustration and satisfaction. This corpus has been set up to develop new systems able to model the continuous aspect of semantic and paralinguistic information at the conversation level. The present work focuses on the paralinguistic level, more precisely on the expression of emotions. In the call center industry, the conversation usually aims at solving the caller’s request. As far as we know, most emotional databases contain static annotations in discrete categories or in dimensions such as activation or valence. We hypothesize that these dimensions are not task-related enough. Moreover, static annotations do not enable to explore the temporal evolution of emotional states. To solve this issue, we propose a corpus with a rich annotation scheme enabling a real-time investigation of the axis frustration / satisfaction. AlloSat regroups 303 conversations with a total of approximately 37 hours of audio, all recorded in real-life environments collected by Allo-Media (an intelligent call tracking company). First regression experiments, with audio features, show that the evolution of frustration / satisfaction axis can be retrieved automatically at the conversation level.