Luciano Serafini

Also published as: L. Serafini


NewsReader: recording history from daily news streams
Piek Vossen | German Rigau | Luciano Serafini | Pim Stouten | Francis Irving | Willem Van Hage
Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC'14)

The European project NewsReader develops technology to process daily news streams in 4 languages, extracting what happened, when, where and who was involved. NewsReader does not just read a single newspaper but massive amounts of news coming from thousands of sources. It compares the results across sources to complement information and determine where they disagree. Furthermore, it merges news of today with previous news, creating a long-term history rather than separate events. The result is stored in a KnowledgeStore, that cumulates information over time, producing an extremely large knowledge graph that is visualized using new techniques to provide more comprehensive access. We present the first version of the system and the results of processing first batches of data.


pdf bib
GAF: A Grounded Annotation Framework for Events
Antske Fokkens | Marieke van Erp | Piek Vossen | Sara Tonelli | Willem Robert van Hage | Luciano Serafini | Rachele Sprugnoli | Jesper Hoeksema
Workshop on Events: Definition, Detection, Coreference, and Representation


The KnowledgeStore: an Entity-Based Storage System
Roldano Cattoni | Francesco Corcoglioniti | Christian Girardi | Bernardo Magnini | Luciano Serafini | Roberto Zanoli
Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC'12)

This paper describes the KnowledgeStore, a large-scale infrastructure for the combined storage and interlinking of multimedia resources and ontological knowledge. Information in the KnowledgeStore is organized around entities, such as persons, organizations and locations. The system allows (i) to import background knowledge about entities, in form of annotated RDF triples; (ii) to associate resources to entities by automatically recognizing, coreferring and linking mentions of named entities; and (iii) to derive new entities based on knowledge extracted from mentions. The KnowledgeStore builds on state of art technologies for language processing, including document tagging, named entity extraction and cross-document coreference. Its design provides for a tight integration of linguistic and semantic features, and eases the further processing of information by explicitly representing the contexts where knowledge and mentions are valid or relevant. We describe the system and report about the creation of a large-scale KnowledgeStore instance for storing and integrating multimedia contents and background knowledge relevant to the Italian Trentino region.


The role of lexical resources in matching classification schemas
P. Bouquet | L. Serafini | S. Zanobini
Proceedings of the Fifth International Conference on Language Resources and Evaluation (LREC’06)

In this paper, we describe the role and the use of WORDNET as an external lexical resource in a methodology for matching hierarchical classification schemas. The main difference between our methodology and others which were presented is that we pay a lot of effort in eliciting the meaning of the structures we match, and we do this by using extensively lexical knowledge about the words occurring in labels. The result of this elicitation process is encoded in a formal language, called WDL (WORDNET Description Logic), which is our proposal for injecting lexical semantics into more standard knowledge representation languages.