Recently, the structural reading comprehension (SRC) task on web pages has attracted increasing research interests. Although previous SRC work has leveraged extra information such as HTML tags or XPaths, the informative topology of web pages is not effectively exploited. In this work, we propose a Topological Information Enhanced model (TIE), which transforms the token-level task into a tag-level task by introducing a two-stage process (i.e. node locating and answer refining). Based on that, TIE integrates Graph Attention Network (GAT) and Pre-trained Language Model (PLM) to leverage the topological information of both logical structures and spatial structures. Experimental results demonstrate that our model outperforms strong baselines and achieves state-of-the-art performances on the web-based SRC benchmark WebSRC at the time of writing. The code of TIE will be publicly available at https://github.com/X-LANCE/TIE.
With the development of pre-trained language models, remarkable success has been witnessed in dialogue understanding (DU). However, current DU approaches usually employ independent models for each distinct DU task, without considering shared knowledge across different DU tasks. In this paper, we propose a unified generative dialogue understanding framework, named UniDU, to achieve effective information exchange across diverse DU tasks. Here, we reformulate all DU tasks into a unified prompt-based generative model paradigm. More importantly, a novel model-agnostic multi-task training strategy (MATS) is introduced to dynamically adapt the weights of diverse tasks for best knowlege sharing during training, based on the nature and available data of each task. Experiments on ten DU datasets covering five fundamental DU tasks show that the proposed UniDU framework largely outperforms task-specific well-designed methods on all tasks. MATS also reveals the knowledge sharing structure of these tasks. Finally, UniDU obtains promising performance on unseen dialogue domain, showing great potential of generalization.
In a depression-diagnosis-directed clinical session, doctors initiate a conversation with ample emotional support that guides the patients to expose their symptoms based on clinical diagnosis criteria. Such a dialogue system is distinguished from existing single-purpose human-machine dialog systems, as it combines task-oriented and chit-chats with uniqueness in dialogue topics and procedures. However, due to the social stigma associated with mental illness, the dialogue data related to depression consultation and diagnosis are rarely disclosed. Based on clinical depression diagnostic criteria ICD-11 and DSM-5, we designed a 3-phase procedure to construct D4: a Chinese Dialogue Dataset for Depression-Diagnosis-Oriented Chat, which simulates the dialogue between doctors and patients during the diagnosis of depression, including diagnosis results and symptom summary given by professional psychiatrists for each conversation. Upon the newly-constructed dataset, four tasks mirroring the depression diagnosis process are established: response generation, topic prediction, dialog summary, and severity classification of depressive episode and suicide risk. Multi-scale evaluation results demonstrate that a more empathy-driven and diagnostic-accurate consultation dialogue system trained on our dataset can be achieved compared to rule-based bots.
Task-oriented dialogue (TOD) systems have been widely used by mobile phone intelligent assistants to accomplish tasks such as calendar scheduling or hotel reservation. Current TOD systems usually focus on multi-turn text/speech interaction, then they would call back-end APIs designed for TODs to perform the task. However, this API-based architecture greatly limits the information-searching capability of intelligent assistants and may even lead to task failure if TOD-specific APIs are not available or the task is too complicated to be executed by the provided APIs. In this paper, we propose a new TOD architecture: GUI-based task-oriented dialogue system (GUI-TOD). A GUI-TOD system can directly perform GUI operations on real APPs and execute tasks without invoking TOD-specific backend APIs. Furthermore, we release META-GUI, a dataset for training a Multi-modal convErsaTional Agent on mobile GUI. We also propose a multi-model action prediction and response model, which show promising results on META-GUI. The dataset, codes and leaderboard are publicly available.
Thanks to the development of pre-trained language models, multitask learning (MTL) methods achieve a great success in natural language understanding area.However, current MTL methods pay more attention to task selection or model design to fuse as much knowledge as possible, while intrinsic task correlation is often neglected. It is important to learn sharing strategy among multiple tasks rather than sharing everything.%The MTL model is directly shared among all the tasks. %For example, in traditional MTL methods, the last classification layers or the decoder layers are manually separated. More deeply, In this paper, we propose AdapterShare, an adapter differentiation method to explicitly model the task correlation among multiple tasks. AdapterShare is automatically learned based on the gradients on tiny held-out validation data. Compared to single-task learning and fully shared MTL methods, our proposed method obtains obvious performance improvement. Compared to the existing MTL method AdapterFusion, AdapterShare achieves absolute 1.90 average points improvement on five dialogue understanding tasks and 2.33 points gain on NLU tasks.
Web search is an essential way for humans to obtain information, but it’s still a great challenge for machines to understand the contents of web pages. In this paper, we introduce the task of web-based structural reading comprehension. Given a web page and a question about it, the task is to find an answer from the web page. This task requires a system not only to understand the semantics of texts but also the structure of the web page. Moreover, we proposed WebSRC, a novel Web-based Structural Reading Comprehension dataset. WebSRC consists of 400K question-answer pairs, which are collected from 6.4K web pages with corresponding HTML source code, screenshots, and metadata. Each question in WebSRC requires a certain structural understanding of a web page to answer, and the answer is either a text span on the web page or yes/no. We evaluate various strong baselines on our dataset to show the difficulty of our task. We also investigate the usefulness of structural information and visual features. Our dataset and baselines have been publicly available.
Sememes are defined as the atomic units to describe the semantic meaning of concepts. Due to the difficulty of manually annotating sememes and the inconsistency of annotations between experts, the lexical sememe prediction task has been proposed. However, previous methods heavily rely on word or character embeddings, and ignore the fine-grained information. In this paper, we propose a novel pre-training method which is designed to better incorporate the internal information of Chinese character. The Glyph enhanced Chinese Character representation (GCC) is used to assist sememe prediction. We experiment and evaluate our model on HowNet, which is a famous sememe knowledge base. The experimental results show that our method outperforms existing non-external information models.
This work aims to tackle the challenging heterogeneous graph encoding problem in the text-to-SQL task. Previous methods are typically node-centric and merely utilize different weight matrices to parameterize edge types, which 1) ignore the rich semantics embedded in the topological structure of edges, and 2) fail to distinguish local and non-local relations for each node. To this end, we propose a Line Graph Enhanced Text-to-SQL (LGESQL) model to mine the underlying relational features without constructing meta-paths. By virtue of the line graph, messages propagate more efficiently through not only connections between nodes, but also the topology of directed edges. Furthermore, both local and non-local relations are integrated distinctively during the graph iteration. We also design an auxiliary task called graph pruning to improve the discriminative capability of the encoder. Our framework achieves state-of-the-art results (62.8% with Glove, 72.0% with Electra) on the cross-domain text-to-SQL benchmark Spider at the time of writing.
Given a database schema, Text-to-SQL aims to translate a natural language question into the corresponding SQL query. Under the setup of cross-domain, traditional semantic parsing models struggle to adapt to unseen database schemas. To improve the model generalization capability for rare and unseen schemas, we propose a new architecture, ShadowGNN, which processes schemas at abstract and semantic levels. By ignoring names of semantic items in databases, abstract schemas are exploited in a well-designed graph projection neural network to obtain delexicalized representation of question and schema. Based on the domain-independent representations, a relation-aware transformer is utilized to further extract logical linking between question and schema. Finally, a SQL decoder with context-free grammar is applied. On the challenging Text-to-SQL benchmark Spider, empirical results show that ShadowGNN outperforms state-of-the-art models. When the annotated data is extremely limited (only 10% training set), ShadowGNN gets over absolute 5% performance gain, which shows its powerful generalization ability. Our implementation will be open-sourced at https://github.com/WowCZ/shadowgnn
Dialogue state tracking (DST) aims at estimating the current dialogue state given all the preceding conversation. For multi-domain DST, the data sparsity problem is a major obstacle due to increased numbers of state candidates and dialogue lengths. To encode the dialogue context efficiently, we utilize the previous dialogue state (predicted) and the current dialogue utterance as the input for DST. To consider relations among different domain-slots, the schema graph involving prior knowledge is exploited. In this paper, a novel context and schema fusion network is proposed to encode the dialogue context and schema graph by using internal and external attention mechanisms. Experiment results show that our approach can outperform strong baselines, and the previous state-of-the-art method (SOM-DST) can also be improved by our proposed schema graph.
Efficient structure encoding for graphs with labeled edges is an important yet challenging point in many graph-based models. This work focuses on AMR-to-text generation – A graph-to-sequence task aiming to recover natural language from Abstract Meaning Representations (AMR). Existing graph-to-sequence approaches generally utilize graph neural networks as their encoders, which have two limitations: 1) The message propagation process in AMR graphs is only guided by the first-order adjacency information. 2) The relationships between labeled edges are not fully considered. In this work, we propose a novel graph encoding framework which can effectively explore the edge relations. We also adopt graph attention networks with higher-order neighborhood information to encode the rich structure in AMR graphs. Experiment results show that our approach obtains new state-of-the-art performance on English AMR benchmark datasets. The ablation analyses also demonstrate that both edge relations and higher-order information are beneficial to graph-to-sequence modeling.
Chinese short text matching usually employs word sequences rather than character sequences to get better performance. However, Chinese word segmentation can be erroneous, ambiguous or inconsistent, which consequently hurts the final matching performance. To address this problem, we propose neural graph matching networks, a novel sentence matching framework capable of dealing with multi-granular input information. Instead of a character sequence or a single word sequence, paired word lattices formed from multiple word segmentation hypotheses are used as input and the model learns a graph representation according to an attentive graph matching mechanism. Experiments on two Chinese datasets show that our models outperform the state-of-the-art short text matching models.
One daunting problem for semantic parsing is the scarcity of annotation. Aiming to reduce nontrivial human labor, we propose a two-stage semantic parsing framework, where the first stage utilizes an unsupervised paraphrase model to convert an unlabeled natural language utterance into the canonical utterance. The downstream naive semantic parser accepts the intermediate output and returns the target logical form. Furthermore, the entire training process is split into two phases: pre-training and cycle learning. Three tailored self-supervised tasks are introduced throughout training to activate the unsupervised paraphrase model. Experimental results on benchmarks Overnight and GeoGranno demonstrate that our framework is effective and compatible with supervised training.
Pattern-based labeling methods have achieved promising results in alleviating the inevitable labeling noises of distantly supervised neural relation extraction. However, these methods require significant expert labor to write relation-specific patterns, which makes them too sophisticated to generalize quickly. To ease the labor-intensive workload of pattern writing and enable the quick generalization to new relation types, we propose a neural pattern diagnosis framework, DIAG-NRE, that can automatically summarize and refine high-quality relational patterns from noise data with human experts in the loop. To demonstrate the effectiveness of DIAG-NRE, we apply it to two real-world datasets and present both significant and interpretable improvements over state-of-the-art methods.
Recently, deep reinforcement learning (DRL) has been used for dialogue policy optimization. However, many DRL-based policies are not sample-efficient. Most recent advances focus on improving DRL optimization algorithms to address this issue. Here, we take an alternative route of designing neural network structure that is better suited for DRL-based dialogue management. The proposed structured deep reinforcement learning is based on graph neural networks (GNN), which consists of some sub-networks, each one for a node on a directed graph. The graph is defined according to the domain ontology and each node can be considered as a sub-agent. During decision making, these sub-agents have internal message exchange between neighbors on the graph. We also propose an approach to jointly optimize the graph structure as well as the parameters of GNN. Experiments show that structured DRL significantly outperforms previous state-of-the-art approaches in almost all of the 18 tasks of the PyDial benchmark.
Dialogue state tracker is the core part of a spoken dialogue system. It estimates the beliefs of possible user’s goals at every dialogue turn. However, for most current approaches, it’s difficult to scale to large dialogue domains. They have one or more of following limitations: (a) Some models don’t work in the situation where slot values in ontology changes dynamically; (b) The number of model parameters is proportional to the number of slots; (c) Some models extract features based on hand-crafted lexicons. To tackle these challenges, we propose StateNet, a universal dialogue state tracker. It is independent of the number of values, shares parameters across all slots, and uses pre-trained word vectors instead of explicit semantic dictionaries. Our experiments on two datasets show that our approach not only overcomes the limitations, but also significantly outperforms the performance of state-of-the-art approaches.
Dialogue state tracking (DST), when formulated as a supervised learning problem, relies on labelled data. Since dialogue state annotation usually requires labelling all turns of a single dialogue and utilizing context information, it is very expensive to annotate all available unlabelled data. In this paper, a novel cost-sensitive active learning framework is proposed based on a set of new dialogue-level query strategies. This is the first attempt to apply active learning for dialogue state tracking. Experiments on DSTC2 show that active learning with mixed data query strategies can effectively achieve the same DST performance with significantly less data annotation compared to traditional training approaches.
The key to building an evolvable dialogue system in real-world scenarios is to ensure an affordable on-line dialogue policy learning, which requires the on-line learning process to be safe, efficient and economical. But in reality, due to the scarcity of real interaction data, the dialogue system usually grows slowly. Besides, the poor initial dialogue policy easily leads to bad user experience and incurs a failure of attracting users to contribute training data, so that the learning process is unsustainable. To accurately depict this, two quantitative metrics are proposed to assess safety and efficiency issues. For solving the unsustainable learning problem, we proposed a complete companion teaching framework incorporating the guidance from the human teacher. Since the human teaching is expensive, we compared various teaching schemes answering the question how and when to teach, to economically utilize teaching budget, so that make the online learning process affordable.
Hand-crafted rules and reinforcement learning (RL) are two popular choices to obtain dialogue policy. The rule-based policy is often reliable within predefined scope but not self-adaptable, whereas RL is evolvable with data but often suffers from a bad initial performance. We employ a companion learning framework to integrate the two approaches for on-line dialogue policy learning, in which a pre-defined rule-based policy acts as a “teacher” and guides a data-driven RL system by giving example actions as well as additional rewards. A novel agent-aware dropout Deep Q-Network (AAD-DQN) is proposed to address the problem of when to consult the teacher and how to learn from the teacher’s experiences. AAD-DQN, as a data-driven student policy, provides (1) two separate experience memories for student and teacher, (2) an uncertainty estimated by dropout to control the timing of consultation and learning. Simulation experiments showed that the proposed approach can significantly improve both safetyand efficiency of on-line policy optimization compared to other companion learning approaches as well as supervised pre-training using static dialogue corpus.
On-line dialogue policy learning is the key for building evolvable conversational agent in real world scenarios. Poor initial policy can easily lead to bad user experience and consequently fail to attract sufficient users for policy training. A novel framework, companion teaching, is proposed to include a human teacher in the dialogue policy training loop to address the cold start problem. Here, dialogue policy is trained using not only user’s reward, but also teacher’s example action as well as estimated immediate reward at turn level. Simulation experiments showed that, with small number of human teaching dialogues, the proposed approach can effectively improve user experience at the beginning and smoothly lead to good performance with more user interaction data.