In this paper, we examine the linguistic phenomenon known as ‘depiction’, which relates to the ability to visually represent semantic components (Dudis, 2004). While some elements of this have been described for Irish Sign Language, with particular attention to the ‘productive lexicon’ (Leeson & Grehan, 2004; Leeson & Saeed, 2012; Matthews, 1996; O’Baoill & Matthews, 2000), here, we take the analysis further, drawing on what we have learned from cognitive linguistics over the past decade. Drawing on several recently developed domain-specific glossaries (e.g., STEM1, Covid-192, political domain, Sexual, Domestic and Gender Based Violence (SDGBV)-related vocabulary) we present ongoing analysis indicating that a deliberate focus on iconicity, in particular, elements of depiction, appears to be a primary driver. We also consider the potential implications of the insights we intend to gain from Deaf-led glossary glossary development work in the context of Machine Translation goals, for example, for work in progress on the Horizon 2020 funded SignON project.
The SignON project (www.signon-project.eu) focuses on the research and development of a Sign Language (SL) translation mobile application and an open communications framework. SignON rectifies the lack of technology and services for the automatic translation between signed and spoken languages, through an inclusive, humancentric solution which facilitates communication between deaf, hard of hearing (DHH) and hearing individuals. We present an overview of the current status of the project, describing the milestones reached to date and the approaches that are being developed to address the challenges and peculiarities of Sign Language Machine Translation (SLMT).
This paper addresses the tasks of sign segmentation and segment-meaning mapping in the context of sign language (SL) recognition. It aims to give an overview of the linguistic properties of SL, such as coarticulation and simultaneity, which make these tasks complex. A better understanding of SL structure is the necessary ground for the design and development of SL recognition and segmentation methodologies, which are fundamental for machine translation of these languages. Based on this preliminary exploration, a proposal for mapping segments to meaning in the form of an agglomerate of lexical and non-lexical information is introduced.