As the excessive pre-training cost arouses the need to improve efficiency, considerable efforts have been made to train BERT progressively–start from an inferior but low-cost model and gradually increase the computational complexity. Our objective is to help advance the understanding of such Transformer growth and discover principles that guide progressive training. First, we find that similar to network architecture selection, Transformer growth also favors compound scaling. Specifically, while existing methods only conduct network growth in a single dimension, we observe that it is beneficial to use compound growth operators and balance multiple dimensions (e.g., depth, width, and input length of the model). Moreover, we explore alternative growth operators in each dimension via controlled comparison to give practical guidance for operator selection. In light of our analyses, the proposed method CompoundGrow speeds up BERT pre-training by 73.6% and 82.2% for the base and large models respectively while achieving comparable performances.
Sequence labeling is a fundamental task for a range of natural language processing problems. When used in practice, its performance is largely influenced by the annotation quality and quantity, and meanwhile, obtaining ground truth labels is often costly. In many cases, ground truth labels do not exist, but noisy annotations or annotations from different domains are accessible. In this paper, we propose a novel framework Consensus Network (ConNet) that can be trained on annotations from multiple sources (e.g., crowd annotation, cross-domain data). It learns individual representation for every source and dynamically aggregates source-specific knowledge by a context-aware attention module. Finally, it leads to a model reflecting the agreement (consensus) among multiple sources. We evaluate the proposed framework in two practical settings of multi-source learning: learning with crowd annotations and unsupervised cross-domain model adaptation. Extensive experimental results show that our model achieves significant improvements over existing methods in both settings. We also demonstrate that the method can apply to various tasks and cope with different encoders.
Commonly adopted metrics for extractive summarization focus on lexical overlap at the token level. In this paper, we present a facet-aware evaluation setup for better assessment of the information coverage in extracted summaries. Specifically, we treat each sentence in the reference summary as a facet, identify the sentences in the document that express the semantics of each facet as support sentences of the facet, and automatically evaluate extractive summarization methods by comparing the indices of extracted sentences and support sentences of all the facets in the reference summary. To facilitate this new evaluation setup, we construct an extractive version of the CNN/Daily Mail dataset and perform a thorough quantitative investigation, through which we demonstrate that facet-aware evaluation manifests better correlation with human judgment than ROUGE, enables fine-grained evaluation as well as comparative analysis, and reveals valuable insights of state-of-the-art summarization methods. Data can be found at https://github.com/morningmoni/FAR.
Transformers have proved effective in many NLP tasks. However, their training requires non-trivial efforts regarding carefully designing cutting-edge optimizers and learning rate schedulers (e.g., conventional SGD fails to train Transformers effectively). Our objective here is to understand __what complicates Transformer training__ from both empirical and theoretical perspectives. Our analysis reveals that unbalanced gradients are not the root cause of the instability of training. Instead, we identify an amplification effect that influences training substantially—for each layer in a multi-layer Transformer model, heavy dependency on its residual branch makes training unstable, since it amplifies small parameter perturbations (e.g., parameter updates) and results in significant disturbances in the model output. Yet we observe that a light dependency limits the model potential and leads to inferior trained models. Inspired by our analysis, we propose Admin (Adaptive model initialization) to stabilize the early stage’s training and unleash its full potential in the late stage. Extensive experiments show that Admin is more stable, converges faster, and leads to better performance
This paper presents the winning solution to the Arabic Named Entity Recognition challenge run by Topcoder.com. The proposed model integrates various tailored techniques together, including representation learning, feature engineering, sequence labeling, and ensemble learning. The final model achieves a test F_1 score of 75.82% on the AQMAR dataset and outperforms baselines by a large margin. Detailed analyses are conducted to reveal both its strengths and limitations. Specifically, we observe that (1) representation learning modules can significantly boost the performance but requires a proper pre-processing and (2) the resulting embedding can be further enhanced with feature engineering due to the limited size of the training data. All implementations and pre-trained models are made public.
Word embeddings are widely used on a variety of tasks and can substantially improve the performance. However, their quality is not consistent throughout the vocabulary due to the long-tail distribution of word frequency. Without sufficient contexts, rare word embeddings are usually less reliable than those of common words. However, current models typically trust all word embeddings equally regardless of their reliability and thus may introduce noise and hurt the performance. Since names often contain rare and uncommon words, this problem is particularly critical for name tagging. In this paper, we propose a novel reliability-aware name tagging model to tackle this issue. We design a set of word frequency-based reliability signals to indicate the quality of each word embedding. Guided by the reliability signals, the model is able to dynamically select and compose features such as word embedding and character-level representation using gating mechanisms. For example, if an input word is rare, the model relies less on its word embedding and assigns higher weights to its character and contextual features. Experiments on OntoNotes 5.0 show that our model outperforms the baseline model by 2.7% absolute gain in F-score. In cross-genre experiments on five genres in OntoNotes, our model improves the performance for most genre pairs and obtains up to 5% absolute F-score gain.
In recent years there is a surge of interest in applying distant supervision (DS) to automatically generate training data for relation extraction (RE). In this paper, we study the problem what limits the performance of DS-trained neural models, conduct thorough analyses, and identify a factor that can influence the performance greatly, shifted label distribution. Specifically, we found this problem commonly exists in real-world DS datasets, and without special handing, typical DS-RE models cannot automatically adapt to this shift, thus achieving deteriorated performance. To further validate our intuition, we develop a simple yet effective adaptation method for DS-trained models, bias adjustment, which updates models learned over the source domain (i.e., DS training set) with a label distribution estimated on the target domain (i.e., test set). Experiments demonstrate that bias adjustment achieves consistent performance gains on DS-trained models, especially on neural models, with an up to 23% relative F1 improvement, which verifies our assumptions. Our code and data can be found at https://github.com/INK-USC/shifted-label-distribution.
Everyone makes mistakes. So do human annotators when curating labels for named entity recognition (NER). Such label mistakes might hurt model training and interfere model comparison. In this study, we dive deep into one of the widely-adopted NER benchmark datasets, CoNLL03 NER. We are able to identify label mistakes in about 5.38% test sentences, which is a significant ratio considering that the state-of-the-art test F1 score is already around 93%. Therefore, we manually correct these label mistakes and form a cleaner test set. Our re-evaluation of popular models on this corrected test set leads to more accurate assessments, compared to those on the original test set. More importantly, we propose a simple yet effective framework, CrossWeigh, to handle label mistakes during NER model training. Specifically, it partitions the training data into several folds and train independent NER models to identify potential mistakes in each fold. Then it adjusts the weights of training data accordingly to train the final NER model. Extensive experiments demonstrate significant improvements of plugging various NER models into our proposed framework on three datasets. All implementations and corrected test set are available at our Github repo https://github.com/ZihanWangKi/CrossWeigh.
Many efforts have been made to facilitate natural language processing tasks with pre-trained language models (LMs), and brought significant improvements to various applications. To fully leverage the nearly unlimited corpora and capture linguistic information of multifarious levels, large-size LMs are required; but for a specific task, only parts of these information are useful. Such large-sized LMs, even in the inference stage, may cause heavy computation workloads, making them too time-consuming for large-scale applications. Here we propose to compress bulky LMs while preserving useful information with regard to a specific task. As different layers of the model keep different information, we develop a layer selection method for model pruning using sparsity-inducing regularization. By introducing the dense connectivity, we can detach any layer without affecting others, and stretch shallow and wide LMs to be deep and narrow. In model training, LMs are learned with layer-wise dropouts for better robustness. Experiments on two benchmark datasets demonstrate the effectiveness of our method.
Recent advances in deep neural models allow us to build reliable named entity recognition (NER) systems without handcrafting features. However, such methods require large amounts of manually-labeled training data. There have been efforts on replacing human annotations with distant supervision (in conjunction with external dictionaries), but the generated noisy labels pose significant challenges on learning effective neural models. Here we propose two neural models to suit noisy distant supervision from the dictionary. First, under the traditional sequence labeling framework, we propose a revised fuzzy CRF layer to handle tokens with multiple possible labels. After identifying the nature of noisy labels in distant supervision, we go beyond the traditional framework and propose a novel, more effective neural model AutoNER with a new Tie or Break scheme. In addition, we discuss how to refine distant supervision for better NER performance. Extensive experiments on three benchmark datasets demonstrate that AutoNER achieves the best performance when only using dictionaries with no additional human effort, and delivers competitive results with state-of-the-art supervised benchmarks.
Relation extraction is a fundamental task in information extraction. Most existing methods have heavy reliance on annotations labeled by human experts, which are costly and time-consuming. To overcome this drawback, we propose a novel framework, REHession, to conduct relation extractor learning using annotations from heterogeneous information source, e.g., knowledge base and domain heuristics. These annotations, referred as heterogeneous supervision, often conflict with each other, which brings a new challenge to the original relation extraction task: how to infer the true label from noisy labels for a given instance. Identifying context information as the backbone of both relation extraction and true label discovery, we adopt embedding techniques to learn the distributed representations of context, which bridges all components with mutual enhancement in an iterative fashion. Extensive experimental results demonstrate the superiority of REHession over the state-of-the-art.