Liwei Jiang


2022

pdf
NeuroLogic A*esque Decoding: Constrained Text Generation with Lookahead Heuristics
Ximing Lu | Sean Welleck | Peter West | Liwei Jiang | Jungo Kasai | Daniel Khashabi | Ronan Le Bras | Lianhui Qin | Youngjae Yu | Rowan Zellers | Noah A. Smith | Yejin Choi
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

The dominant paradigm for neural text generation is left-to-right decoding from autoregressive language models. Constrained or controllable generation under complex lexical constraints, however, requires foresight to plan ahead feasible future paths. Drawing inspiration from the A* search algorithm, we propose NeuroLogic A*esque, a decoding algorithm that incorporates heuristic estimates of future cost. We develop lookahead heuristics that are efficient for large-scale language models, making our method a drop-in replacement for common techniques such as beam search and top-k sampling. To enable constrained generation, we build on NeuroLogic decoding (Lu et al., 2021), combining its flexibility in incorporating logical constraints with A*esque estimates of future constraint satisfaction. Our approach outperforms competitive baselines on five generation tasks, and achieves new state-of-the-art performance on table-to-text generation, constrained machine translation, and keyword-constrained generation. The improvements are particularly notable on tasks that require complex constraint satisfaction or in few-shot or zero-shot settings. NeuroLogic A*esque illustrates the power of decoding for improving and enabling new capabilities of large-scale language models.

pdf
Symbolic Knowledge Distillation: from General Language Models to Commonsense Models
Peter West | Chandra Bhagavatula | Jack Hessel | Jena Hwang | Liwei Jiang | Ronan Le Bras | Ximing Lu | Sean Welleck | Yejin Choi
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

The common practice for training commonsense models has gone from–human–to–corpus–to–machine: humans author commonsense knowledge graphs in order to train commonsense models. In this work, we investigate an alternative, from–machine–to–corpus–to–machine: general language models author these commonsense knowledge graphs to train commonsense models. Our study leads to a new framework, Symbolic Knowledge Distillation. As with prior art in Knowledge Distillation (Hinton et al. 2015), our approach uses larger models to teach smaller models. A key difference is that we distill knowledge symbolically–as text–in addition to the neural model. We distill only one aspect–the commonsense of a general language model teacher, allowing the student to be a different type, a commonsense model. Altogether, we show that careful prompt engineering and a separately trained critic model allow us to selectively distill high-quality causal commonsense from GPT-3, a general language model. Empirical results demonstrate that, for the first time, a human-authored commonsense knowledge graph is surpassed by our automatically distilled variant in all three criteria: quantity, quality, and diversity. In addition, it results in a neural commonsense model that surpasses the teacher model’s commonsense capabilities despite its 100x smaller size. We apply this to the ATOMIC resource, and will share our new symbolic knowledge graph and commonsense models.

pdf
Aligning to Social Norms and Values in Interactive Narratives
Prithviraj Ammanabrolu | Liwei Jiang | Maarten Sap | Hannaneh Hajishirzi | Yejin Choi
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

We focus on creating agents that act in alignment with socially beneficial norms and values in interactive narratives or text-based games—environments wherein an agent perceives and interacts with a world through natural language. Such interactive agents are often trained via reinforcement learning to optimize task performance, even when such rewards may lead to agent behaviors that violate societal norms—causing harm either to the agent itself or other entities in the environment. Social value alignment refers to creating agents whose behaviors conform to expected moral and social norms for a given context and group of people—in our case, it means agents that behave in a manner that is less harmful and more beneficial for themselves and others.We build on the Jiminy Cricket benchmark (Hendrycks et al. 2021), a set of 25 annotated interactive narratives containing thousands of morally salient scenarios covering everything from theft and bodily harm to altruism. We introduce the GALAD (Game-value ALignment through Action Distillation) agent that uses the social commonsense knowledge present in specially trained language models to contextually restrict its action space to only those actions that are aligned with socially beneficial values. An experimental study shows that the GALAD agent makes decisions efficiently enough to improve state-of-the-art task performance by 4% while reducing the frequency of socially harmful behaviors by 25% compared to strong contemporary value alignment approaches.

pdf
ProsocialDialog: A Prosocial Backbone for Conversational Agents
Hyunwoo Kim | Youngjae Yu | Liwei Jiang | Ximing Lu | Daniel Khashabi | Gunhee Kim | Yejin Choi | Maarten Sap
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Most existing dialogue systems fail to respond properly to potentially unsafe user utterances by either ignoring or passively agreeing with them. To address this issue, we introduce ProsocialDialog, the first large-scale multi-turn dialogue dataset to teach conversational agents to respond to problematic content following social norms. Covering diverse unethical, problematic, biased, and toxic situations, ProsocialDialog contains responses that encourage prosocial behavior, grounded in commonsense social rules (i.e., rules-of-thumb, RoTs). Created via a human-AI collaborative framework, ProsocialDialog consists of 58K dialogues, with 331K utterances, 160K unique RoTs, and 497K dialogue safety labels accompanied by free-form rationales.With this dataset, we introduce a dialogue safety detection module, Canary, capable of generating RoTs given conversational context, and a socially-informed dialogue agent, Prost. Empirical results show that Prost generates more socially acceptable dialogues compared to other state-of-the-art language and dialogue models in both in-domain and out-of-domain settings. Additionally, Canary effectively guides conversational agents and off-the-shelf language models to generate significantly more prosocial responses. Our work highlights the promise and importance of creating and steering conversational AI to be socially responsible.

2021

pdf
I’m Not Mad”: Commonsense Implications of Negation and Contradiction
Liwei Jiang | Antoine Bosselut | Chandra Bhagavatula | Yejin Choi
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Natural language inference requires reasoning about contradictions, negations, and their commonsense implications. Given a simple premise (e.g., “I’m mad at you”), humans can reason about the varying shades of contradictory statements ranging from straightforward negations (“I’m not mad at you”) to commonsense contradictions (“I’m happy”). Moreover, these negated or contradictory statements shift the commonsense implications of the original premise in interesting and nontrivial ways. For example, while “I’m mad” implies “I’m unhappy about something,” negating the premise does not necessarily negate the corresponding commonsense implications. In this paper, we present the first comprehensive study focusing on commonsense implications of negated statements and contradictions. We introduce ANION, a new commonsense knowledge graph with 624K if-then rules focusing on negated and contradictory events. We then present joint generative and discriminative inference models for this new resource, providing novel empirical insights on how logical negations and commonsense contradictions reshape the commonsense implications of their original premises.