Recent metaphor identification approaches mainly consider the contextual text features within a sentence or introduce external linguistic features to the model. But they usually ignore the extra information that the data can provide, such as the contextual metaphor information and broader discourse information. In this paper, we propose a model augmented with hierarchical contextualized representation to extract more information from both sentence-level and discourse-level. At the sentence level, we leverage the metaphor information of words that except the target word in the sentence to strengthen the reasoning ability of our model via a novel label-enhanced contextualized representation. At the discourse level, the position-aware global memory network is adopted to learn long-range dependency among the same words within a discourse. Finally, our model combines the representations obtained from these two parts. The experiment results on two tasks of the VUA dataset show that our model outperforms every other state-of-the-art method that also does not use any external knowledge except what the pre-trained language model contains.
Although researches on word embeddings have made great progress in recent years, many tasks in natural language processing are on the sentence level. Thus, it is essential to learn sentence embeddings. Recently, Sentence BERT (SBERT) is proposed to learn embeddings on the sentence level, and it uses the inner product (or, cosine similarity) to compute semantic similarity between sentences. However, this measurement cannot well describe the semantic structures among sentences. The reason is that sentences may lie on a manifold in the ambient space rather than distribute in an Euclidean space. Thus, cosine similarity cannot approximate distances on the manifold. To tackle the severe problem, we propose a novel sentence embedding method called Sentence BERT with Locality Preserving (SBERT-LP), which discovers the sentence submanifold from a high-dimensional space and yields a compact sentence representation subspace by locally preserving geometric structures of sentences. We compare the SBERT-LP with several existing sentence embedding approaches from three perspectives: sentence similarity, sentence classification and sentence clustering. Experimental results and case studies demonstrate that our method encodes sentences better in the sense of semantic structures.
Metaphor involves not only a linguistic phenomenon, but also a cognitive phenomenon structuring human thought, which makes understanding it challenging. As a means of cognition, metaphor is rendered by more than texts alone, and multimodal information in which vision/audio content is integrated with the text can play an important role in expressing and understanding metaphor. However, previous metaphor processing and understanding has focused on texts, partly due to the unavailability of large-scale datasets with ground truth labels of multimodal metaphor. In this paper, we introduce MultiMET, a novel multimodal metaphor dataset to facilitate understanding metaphorical information from multimodal text and image. It contains 10,437 text-image pairs from a range of sources with multimodal annotations of the occurrence of metaphors, domain relations, sentiments metaphors convey, and author intents. MultiMET opens the door to automatic metaphor understanding by investigating multimodal cues and their interplay. Moreover, we propose a range of strong baselines and show the importance of combining multimodal cues for metaphor understanding. MultiMET will be released publicly for research.
The wanton spread of hate speech on the internet brings great harm to society and families. It is urgent to establish and improve automatic detection and active avoidance mechanisms for hate speech. While there exist methods for hate speech detection, they stereotype words and hence suffer from inherently biased training. In other words, getting more affective features from other affective resources will significantly affect the performance of hate speech detection. In this paper, we propose a hate speech detection framework based on sentiment knowledge sharing. While extracting the affective features of the target sentence itself, we make better use of the sentiment features from external resources, and finally fuse features from different feature extraction units to detect hate speech. Experimental results on two public datasets demonstrate the effectiveness of our model.
In our daily life, metaphor is a common way of expression. To understand the meaning of a metaphor, we should recognize the metaphor words which play important roles. In the metaphor detection task, we design a sequence labeling model based on ALBERT-LSTM-softmax. By applying this model, we carry out a lot of experiments and compare the experimental results with different processing methods, such as with different input sentences and tokens, or the methods with CRF and softmax. Then, some tricks are adopted to improve the experimental results. Finally, our model achieves a 0.707 F1-score for the all POS subtask and a 0.728 F1-score for the verb subtask on the TOEFL dataset.
Homographic puns have a long history in human writing, widely used in written and spoken literature, which usually occur in a certain syntactic or stylistic structure. How to recognize homographic puns is an important research. However, homographic pun recognition does not solve very well in existing work. In this work, we first use WordNet to understand and expand word embedding for settling the polysemy of homographic puns, and then propose a WordNet-Encoded Collocation-Attention network model (WECA) which combined with the context weights for recognizing the puns. Our experiments on the SemEval2017 Task7 and Pun of the Day demonstrate that the proposed model is able to distinguish between homographic pun and non-homographic pun texts. We show the effectiveness of the model to present the capability of choosing qualitatively informative words. The results show that our model achieves the state-of-the-art performance on homographic puns recognition.
Metaphors are frequently used to convey emotions. However, there is little research on the construction of metaphor corpora annotated with emotion for the analysis of emotionality of metaphorical expressions. Furthermore, most studies focus on English, and few in other languages, particularly Sino-Tibetan languages such as Chinese, for emotion analysis from metaphorical texts, although there are likely to be many differences in emotional expressions of metaphorical usages across different languages. We therefore construct a significant new corpus on metaphor, with 5,605 manually annotated sentences in Chinese. We present an annotation scheme that contains annotations of linguistic metaphors, emotional categories (joy, anger, sadness, fear, love, disgust and surprise), and intensity. The annotation agreement analyses for multiple annotators are described. We also use the corpus to explore and analyze the emotionality of metaphors. To the best of our knowledge, this is the first relatively large metaphor corpus with an annotation of emotions in Chinese.