Li Yang


2022

pdf
SMARTAVE: Structured Multimodal Transformer for Product Attribute Value Extraction
Qifan Wang | Li Yang | Jingang Wang | Jitin Krishnan | Bo Dai | Sinong Wang | Zenglin Xu | Madian Khabsa | Hao Ma
Findings of the Association for Computational Linguistics: EMNLP 2022

Automatic product attribute value extraction refers to the task of identifying values of an attribute from the product information. Product attributes are essential in improving online shopping experience for customers. Most existing methods focus on extracting attribute values from product title and description.However, in many real-world applications, a product is usually represented by multiple modalities beyond title and description, such as product specifications, text and visual information from the product image, etc. In this paper, we propose SMARTAVE, a Structure Mltimodal trAnsformeR for producT Attribute Value Extraction, which jointly encodes the structured product information from multiple modalities. Specifically, in SMARTAVE encoder, we introduce hyper-tokens to represent the modality-level information, and local-tokens to represent the original text and visual inputs. Structured attention patterns are designed among the hyper-tokens and local-tokens for learning effective product representation. The attribute values are then extracted based on the learned embeddings. We conduct extensive experiments on two multimodal product datasets. Experimental results demonstrate the superior performance of the proposed approach over several state-of-the-art methods. Ablation studies validate the effectiveness of the structured attentions in modeling the multimodal product information.

pdf
Learning to Generate Question by Asking Question: A Primal-Dual Approach with Uncommon Word Generation
Qifan Wang | Li Yang | Xiaojun Quan | Fuli Feng | Dongfang Liu | Zenglin Xu | Sinong Wang | Hao Ma
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Automatic question generation (AQG) is the task of generating a question from a given passage and an answer. Most existing AQG methods aim at encoding the passage and the answer to generate the question. However, limited work has focused on modeling the correlation between the target answer and the generated question. Moreover, unseen or rare word generation has not been studied in previous works. In this paper, we propose a novel approach which incorporates question generation with its dual problem, question answering, into a unified primal-dual framework. Specifically, the question generation component consists of an encoder that jointly encodes the answer with the passage, and a decoder that produces the question. The question answering component then re-asks the generated question on the passage to ensure that the target answer is obtained. We further introduce a knowledge distillation module to improve the model generalization ability. We conduct an extensive set of experiments on SQuAD and HotpotQA benchmarks. Experimental results demonstrate the superior performance of the proposed approach over several state-of-the-art methods.

2020

pdf
Improving Multimodal Named Entity Recognition via Entity Span Detection with Unified Multimodal Transformer
Jianfei Yu | Jing Jiang | Li Yang | Rui Xia
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

In this paper, we study Multimodal Named Entity Recognition (MNER) for social media posts. Existing approaches for MNER mainly suffer from two drawbacks: (1) despite generating word-aware visual representations, their word representations are insensitive to the visual context; (2) most of them ignore the bias brought by the visual context. To tackle the first issue, we propose a multimodal interaction module to obtain both image-aware word representations and word-aware visual representations. To alleviate the visual bias, we further propose to leverage purely text-based entity span detection as an auxiliary module, and design a Unified Multimodal Transformer to guide the final predictions with the entity span predictions. Experiments show that our unified approach achieves the new state-of-the-art performance on two benchmark datasets.

pdf
ETC: Encoding Long and Structured Inputs in Transformers
Joshua Ainslie | Santiago Ontanon | Chris Alberti | Vaclav Cvicek | Zachary Fisher | Philip Pham | Anirudh Ravula | Sumit Sanghai | Qifan Wang | Li Yang
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Transformer models have advanced the state of the art in many Natural Language Processing (NLP) tasks. In this paper, we present a new Transformer architecture, “Extended Transformer Construction” (ETC), that addresses two key challenges of standard Transformer architectures, namely scaling input length and encoding structured inputs. To scale attention to longer inputs, we introduce a novel global-local attention mechanism between global tokens and regular input tokens. We also show that combining global-local attention with relative position encodings and a “Contrastive Predictive Coding” (CPC) pre-training objective allows ETC to encode structured inputs. We achieve state-of-the-art results on four natural language datasets requiring long and/or structured inputs.

2019

pdf
Naive Bayes and BiLSTM Ensemble for Discriminating between Mainland and Taiwan Variation of Mandarin Chinese
Li Yang | Yang Xiang
Proceedings of the Sixth Workshop on NLP for Similar Languages, Varieties and Dialects

Automatic dialect identification is a more challengingctask than language identification, as it requires the ability to discriminate between varieties of one language. In this paper, we propose an ensemble based system, which combines traditional machine learning models trained on bag of n-gram fetures, with deep learning models trained on word embeddings, to solve the Discriminating between Mainland and Taiwan Variation of Mandarin Chinese (DMT) shared task at VarDial 2019. Our experiments show that a character bigram-trigram combination based Naive Bayes is a very strong model for identifying varieties of Mandarin Chinense. Through further ensemble of Navie Bayes and BiLSTM, our system (team: itsalexyang) achived an macro-averaged F1 score of 0.8530 and 0.8687 in two tracks.

2011

pdf
Unsupervised Russian POS Tagging with Appropriate Context
Li Yang | Erik Peterson | John Chen | Yana Petrova | Rohini Srihari
Proceedings of the Fifth International Workshop On Cross Lingual Information Access

2009

pdf
Generalizable Features Help Semantic Role Labeling
Li Yang
Proceedings of the 23rd Pacific Asia Conference on Language, Information and Computation, Volume 2