Lea Grüner


2020

pdf
UniTuebingenCL at SemEval-2020 Task 7: Humor Detection in News Headlines
Charlotte Ammer | Lea Grüner
Proceedings of the Fourteenth Workshop on Semantic Evaluation

This paper describes the work done by the team UniTuebingenCL for the SemEval 2020 Task 7: “Assessing the Funniness of Edited News Headlines”. We participated in both sub-tasks: sub-task A, given the original and the edited headline, predicting the mean funniness of the edited headline; and sub-task B, given the original headline and two edited versions, predicting which edited version is the funnier of the two. A Ridge Regression model using Elmo and Glove embeddings as well as Truncated Singular Value Decomposition was used as the final model. A long short term memory model recurrent network (LSTM) served as another approach for assessing the funniness of a headline. For the first sub-task, we experimented with the extraction of multiple features to achieve lower Root Mean Squared Error. The lowest Root Mean Squared Error achieved was 0.575 for sub-task A, and the highest Accuracy was 0.618 for sub-task B.
Search
Co-authors
Venues